
IJCAT - International Journal of Computing and Technology, Volume 5, Issue 2, February 2018           
ISSN (Online) : 2348-6090        
www.IJCAT.org 

18 

 

Automated Essay Grading using Natural Language 

Processing and Support Vector Machine 
 

 

1 Abhishek Suresh, 2 Manuj Jha 
 

1 Department of Computer Science and Department of Linguistics  

University of Colorado Boulder, Colorado, United States 
 

2 Rawls College of Business 
Texas Tech University, Texas, United States 

 

Abstract - This paper proposes to grade various essays and literary materials automatically using the feature extraction techniques 

from Natural Language Processing (NLP) and Support Vector Machine (SVM), a powerful machine learning algorithm for 
classification, modelled around Education Testing Service’s GRE Analytical Writing scoring guidelines. We extracted various 

features like word count, TF-IDF score, number of paragraphs, part of speech tagging and number of spelling mistakes on the essay 
dataset sourced from Kaggle [1]. After extracting the features using NLP, there were two possible approaches to tackle the problem; 

a regression model or a model based on classification. We used a classification-based approach to train our model with training 
essays, normalized to a scale of 1 to 6. Upon predicting the grades for the essays in testing set, we found that the accuracy of our 

model stood at 0.52, and 0.89 with a tolerance of one point, as permissible by ETS that uses automatic essay grading [2]. Individual 
essay sets can be graded with an automatic grading framework, a lot of human effort could be saved and literary pieces can be 
graded with transparency. 
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1. Introduction 
 

n today’s education system, essays and literary 
pieces form an integral part of assessing one’s 

academic understanding, ability to integrate and 

express ideas meaningfully. It is observed that 

grading such written pieces is a time-taking process and 

take up a huge chunk of instructor’s time.  Also, cases of 

manual grading sometimes being non-transparent are not 

unheard of. So, we plan to tackle this challenge by 

introducing a method to automatically grade written 

pieces. Automated essay scoring is a measurement 

technology in which computers evaluate written work 

[3]. With a model that can grade with good accuracy, a 

lot of instructor’s time can be saved and an impartial 
scoring for students can be achieved. We have used a 

classification-based approach as with lower number of 

possible grades (1 to 6), it makes more sense to classify 

the essays. In a case with grading on a higher scale; let’s 

say 0 to 100, a regression-based method would have 

been more suitable. We have decided to use SVM 

because despite the huge time it takes once to train the 

model, predictions are made with relatively ease and 

great speed. 

 

2. Related Work 

There are various testing services and commercial 

applications which utilize automated grading.  

2.1 Bayesian Essay Test Scoring System (BETSY) 

BETSY is a program that classifies text based on trained 

material into a four-point nominal scale (e.g. extensive, 

essential, partial, unsatisfactory) using a large set of 
features including both content and style specific issues 

[2]. It uses Multivariate Bernoulli Model (MBM) and 

Bernoulli Model (BM), which are considered naïve 

Bayes because they assume conditional-independence. 

BETSY is a Windows-based program written in Power 

Basic and is computationally intensive. It is one of the 

very few applications in the field which are freely 

available and usable. For a naïve Bayes model, it 

provides a good accuracy of around 80%. 

 

2.2 Educational Testing Services (ETS) 

ETS is a testing agency which conducts standardized 

tests like GRE and TOEFL. There are analytical writing 

segments in these exams which are usually graded by 

their proprietary grading framework. This system was 

developed in early nineties and works on a sentence 

fragment of length between 15 to 20 words [2]. 

According to ETS, this technology extracts certain 

features representative of writing quality that not only 

predict scores accurately, but also have a 'logical 

correspondence to the features that readers are instructed 
to consider when they award scores'. It uses Microsoft 

Natural Language Processing (MsNLP) tool to parse the 

essay data, suffixes and stop words are removed. The 

technique uses lexical-semantic technique for scoring 

and builds domain specific, concept-based lexicon from 

training data [4]. Grammar rules are constructed 

manually for each category of answer using syntactic 

parses of sentences from the training data along with the 

lexicon [4]. New essays are then parsed to get part of 
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speech for different words and phrases. The score for 

every GRE essay is the average of the scores of one 

human grader and the scoring engine; if these two scores 

differ by more than one point (out of six), the essay is 

scored by another human grader and that score is used to 

compute the average instead of the scoring engine's 

score. The features currently included in the scoring 

engine are [5]: 

• content analysis based on vocabulary measures 

• lexical complexity 

• proportion of grammar errors 

• proportion of usage errors 

• proportion of mechanics errors 

• proportion of style comments 

• organization and development score 

• features rewarding idiomatic phraseology 

2.3 Conceptual Rater (C-Rater)  

C-Rater is a NLP based prototype aimed at the 

assessment of short answers related to content-based 

questions. It is aimed to categorize a response as being 

either correct or incorrect which is achieved by 

evaluating whether response contains information 

related to specific domain concepts. It classifies the 

essay based on the content rather than style of writing, 

which is the critical factor in E-Rater. C-Rater achieved 

over 80% agreement with the score assigned by the 

instructor [2].  

3. Methodology 

The data consists of eight essay sets with between 1000-

3000 essays in each set, and the rubrics for grading the 

essays. Each essay is about 100-550 words long. Some 

of the essays are more dependent on a particular source 

text than others, and the rubrics reflect this in their grade 

brackets.  

The data for each essay set consists of the essays 

themselves, one or more scores for each essay (the score 

ranges are different across the essay sets) and a resolved 

score if there is more than one score.  

This is the data that will be used to train this essay 

grader algorithm. The input data for the grader would be 

entire essays (and their corresponding question prompts) 

and the output would be scores. The score ranges for the 

essay sets vary, and for the sake of uniformity they have 
been normalized to a scale of 1-6, to mimic the 

Analytical Writing scoring scale used in GRE. 

The workflow for this project is first extracting the 

relevant features from the essay, using a Support Vector 
Machine model for training and then comparing the 

predicted scores against the actual scores graded by 

evaluators to get an error metric. 

 

Features extracted 

3.1 TF-IDF prompt-essay correspondence score 

TF or term frequency is the number of times a word 

appears in the document. DF or document frequency is 

number of times a word occurs in all the documents [6]. 

TF multiplied by the inverse of DF gives TF-IDF. It is a 

metric that reflects how significant a particular word is 

in a document in the collection of documents. Term 

frequency is proportional to the weight of a term that 

occurs in a document, e.g. count or frequency of a word 

in the document, and inverse document frequency is an 

inverse function of count or frequency of documents in 

which it occurs, e.g. the logarithm of the inverse of the 

ratio of documents in which the word occurs to the 

number of documents in the corpus. 

By generating TF-IDF scores for all words in every 

essay and in its relevant prompt, we obtain two vectors 

of unigrams and their TF-IDF scores, with which we 

calculate the cosine similarity between these vectors. 

This value acts as a correspondence score between the 

prompt and the essay. 

3.2 TF-IDF scores of bag of words 

Generating TF-IDF scores of n-grams and using these as 

features helps in determining which words are good 

predictors of final essay score, as opposed to simply 
using a bag of words, with no measure of how important 

each word is in the document. 

3.3 POS tags and lexical density 

POS tags act as a good proxy for semantic difficulty, so 

we use counts of the various POS tags and their bigrams 

as well. We also calculate lexical density as an overall 

metric for semantic difficulty; this is simply a ratio of 

the count of all lexically important POS tags such as 

nouns, adjectives and adverbs to the count of all tags. 

3.4 Statistical metrics 

These are other features that may reflect syntactic 
complexity and semantic difficulty, such as word length, 

word count, sentence count and paragraph count. These 

are converted to z-scores on standardized scales which 
work better with the SVM model [7]. 

3.5 Spelling errors 

By checking every word against a corpus of English 
words from Python’s NLTK library, we obtain a count 

of spelling errors for each essay. 

 

3.6 Type-token ratio 

A metric for lexical diversity; essentially a ratio of the 

number of unique words in each essay to the overall 

number of tokens. 
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3.7 Support Vector Machine 

The Support Vector Machine (SVM) is a supervised 

classification algorithm which was first proposed by 

Vladimir N. Vapnik in 1963. In 1992, he suggested a 
way to create non-linear classifiers by applying the 

kernel to maximum-margin hyperplanes and has since 

attracted a high degree of interest in the machine 

learning research community [8]. SVMs have been 

deployed in a wide range of real world problems such as 

text categorization, handwritten digit recognition, tone 

recognition, image classification, object detection and 

data classification. It has extensive support for kernels to 

deal with non-linearity of data and it needs to be finely 

tuned to get the best results [8]. NLP tasks typically 

represent instances by very high dimensional but very 
sparse feature vectors, which leads to positive and 

negative examples being distributed into two distinctly 

different areas of the feature space. This is particularly 

helpful for the SVM to search a classification hyperplane 

in feature space and for the generalisation capability of 

the classifier as well. That is a main reason why the 

SVM can achieve very good results in a variety of NLP 

tasks [9]. The algorithm takes longer time to train 

compared to other classifiers because of vector 

calculations, which are mathematically intensive. The 

time taken to predict is very low, which is desirable for 

our project since after training the model once, it can 
score the essays very fast. 

4. Result 

We used exact one-to-one correspondence percentages 

and percentage accuracy allowing for an error of one 

point from the actual scores to evaluate our model. The 

results for each essay set are in the Table 4.1.  

             Figure 4.1 

 

Essay 

Set 

Exact Accuracy Accuracy allowing 

for one-point Error 

1 0.51 0.98 

2 0.51 0.96 

3 0.53 0.70 

4 0.60 0.85 

5 0.55 0.87 

6 0.49 0.88 

7 0.45 0.92 

8 0.40 0.92 

Table 4.1 

 

Figure 4.1 is a confusion matrix of the results obtained 

for essay set 1. For the essays belonging to every actual 

human-graded score, this confusion matrix shows their 

distribution across the predicted scores. As can be seen, 

the accuracy of the algorithm is less than 60% when 

using a strict one-to-one method of evaluating the 

predicted classes against the actual grades, but allowing 

for an error of 1 point gives a high accuracy. The 

confusion matrix shows that most essays were either 

rated accurately or very close to the gold class. 

5. Conclusion 

In this paper, we identified a classification-based 

approach to solve the problem of grading literary 

materials manually. We used Natural Language 

Processing to extract various features which are 

characteristic of a good writing. The accuracy of model 

could be further improved if a metric for similarity 

between the essay topic/ problem statement were added. 
The topic on which essay was written was not described 

in the dataset we used, but this is mostly known in most 

of the exams/ standardized tests. The model we designed 

performed reasonably well with an allowance of one 

point in marking and could definitely be used to grade 

written essays/ literary materials. 
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