
IJCAT - International Journal of Computing and Technology, Volume 5, Issue 2, February 2018
ISSN (Online) : 2348-6090
www.IJCAT.org

18

Automated Essay Grading using Natural Language

Processing and Support Vector Machine

1 Abhishek Suresh, 2 Manuj Jha

1 Department of Computer Science and Department of Linguistics

University of Colorado Boulder, Colorado, United States

2 Rawls College of Business
Texas Tech University, Texas, United States

Abstract - This paper proposes to grade various essays and literary materials automatically using the feature extraction techniques

from Natural Language Processing (NLP) and Support Vector Machine (SVM), a powerful machine learning algorithm for
classification, modelled around Education Testing Service’s GRE Analytical Writing scoring guidelines. We extracted various

features like word count, TF-IDF score, number of paragraphs, part of speech tagging and number of spelling mistakes on the essay
dataset sourced from Kaggle [1]. After extracting the features using NLP, there were two possible approaches to tackle the problem;

a regression model or a model based on classification. We used a classification-based approach to train our model with training
essays, normalized to a scale of 1 to 6. Upon predicting the grades for the essays in testing set, we found that the accuracy of our

model stood at 0.52, and 0.89 with a tolerance of one point, as permissible by ETS that uses automatic essay grading [2]. Individual
essay sets can be graded with an automatic grading framework, a lot of human effort could be saved and literary pieces can be
graded with transparency.

Keywords - Natural Language Processing, Essay Grading, Machine Learning, Support Vector Machine

1. Introduction

n today’s education system, essays and literary
pieces form an integral part of assessing one’s

academic understanding, ability to integrate and

express ideas meaningfully. It is observed that

grading such written pieces is a time-taking process and

take up a huge chunk of instructor’s time. Also, cases of

manual grading sometimes being non-transparent are not

unheard of. So, we plan to tackle this challenge by

introducing a method to automatically grade written

pieces. Automated essay scoring is a measurement

technology in which computers evaluate written work

[3]. With a model that can grade with good accuracy, a

lot of instructor’s time can be saved and an impartial
scoring for students can be achieved. We have used a

classification-based approach as with lower number of

possible grades (1 to 6), it makes more sense to classify

the essays. In a case with grading on a higher scale; let’s

say 0 to 100, a regression-based method would have

been more suitable. We have decided to use SVM

because despite the huge time it takes once to train the

model, predictions are made with relatively ease and

great speed.

2. Related Work

There are various testing services and commercial

applications which utilize automated grading.

2.1 Bayesian Essay Test Scoring System (BETSY)

BETSY is a program that classifies text based on trained

material into a four-point nominal scale (e.g. extensive,

essential, partial, unsatisfactory) using a large set of
features including both content and style specific issues

[2]. It uses Multivariate Bernoulli Model (MBM) and

Bernoulli Model (BM), which are considered naïve

Bayes because they assume conditional-independence.

BETSY is a Windows-based program written in Power

Basic and is computationally intensive. It is one of the

very few applications in the field which are freely

available and usable. For a naïve Bayes model, it

provides a good accuracy of around 80%.

2.2 Educational Testing Services (ETS)

ETS is a testing agency which conducts standardized

tests like GRE and TOEFL. There are analytical writing

segments in these exams which are usually graded by

their proprietary grading framework. This system was

developed in early nineties and works on a sentence

fragment of length between 15 to 20 words [2].

According to ETS, this technology extracts certain

features representative of writing quality that not only

predict scores accurately, but also have a 'logical

correspondence to the features that readers are instructed
to consider when they award scores'. It uses Microsoft

Natural Language Processing (MsNLP) tool to parse the

essay data, suffixes and stop words are removed. The

technique uses lexical-semantic technique for scoring

and builds domain specific, concept-based lexicon from

training data [4]. Grammar rules are constructed

manually for each category of answer using syntactic

parses of sentences from the training data along with the

lexicon [4]. New essays are then parsed to get part of

I

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 2, February 2018
ISSN (Online) : 2348-6090
www.IJCAT.org

19

speech for different words and phrases. The score for

every GRE essay is the average of the scores of one

human grader and the scoring engine; if these two scores

differ by more than one point (out of six), the essay is

scored by another human grader and that score is used to

compute the average instead of the scoring engine's

score. The features currently included in the scoring

engine are [5]:

• content analysis based on vocabulary measures

• lexical complexity

• proportion of grammar errors

• proportion of usage errors

• proportion of mechanics errors

• proportion of style comments

• organization and development score

• features rewarding idiomatic phraseology

2.3 Conceptual Rater (C-Rater)

C-Rater is a NLP based prototype aimed at the

assessment of short answers related to content-based

questions. It is aimed to categorize a response as being

either correct or incorrect which is achieved by

evaluating whether response contains information

related to specific domain concepts. It classifies the

essay based on the content rather than style of writing,

which is the critical factor in E-Rater. C-Rater achieved

over 80% agreement with the score assigned by the

instructor [2].

3. Methodology

The data consists of eight essay sets with between 1000-

3000 essays in each set, and the rubrics for grading the

essays. Each essay is about 100-550 words long. Some

of the essays are more dependent on a particular source

text than others, and the rubrics reflect this in their grade

brackets.

The data for each essay set consists of the essays

themselves, one or more scores for each essay (the score

ranges are different across the essay sets) and a resolved

score if there is more than one score.

This is the data that will be used to train this essay

grader algorithm. The input data for the grader would be

entire essays (and their corresponding question prompts)

and the output would be scores. The score ranges for the

essay sets vary, and for the sake of uniformity they have
been normalized to a scale of 1-6, to mimic the

Analytical Writing scoring scale used in GRE.

The workflow for this project is first extracting the

relevant features from the essay, using a Support Vector
Machine model for training and then comparing the

predicted scores against the actual scores graded by

evaluators to get an error metric.

Features extracted

3.1 TF-IDF prompt-essay correspondence score

TF or term frequency is the number of times a word

appears in the document. DF or document frequency is

number of times a word occurs in all the documents [6].

TF multiplied by the inverse of DF gives TF-IDF. It is a

metric that reflects how significant a particular word is

in a document in the collection of documents. Term

frequency is proportional to the weight of a term that

occurs in a document, e.g. count or frequency of a word

in the document, and inverse document frequency is an

inverse function of count or frequency of documents in

which it occurs, e.g. the logarithm of the inverse of the

ratio of documents in which the word occurs to the

number of documents in the corpus.

By generating TF-IDF scores for all words in every

essay and in its relevant prompt, we obtain two vectors

of unigrams and their TF-IDF scores, with which we

calculate the cosine similarity between these vectors.

This value acts as a correspondence score between the

prompt and the essay.

3.2 TF-IDF scores of bag of words

Generating TF-IDF scores of n-grams and using these as

features helps in determining which words are good

predictors of final essay score, as opposed to simply
using a bag of words, with no measure of how important

each word is in the document.

3.3 POS tags and lexical density

POS tags act as a good proxy for semantic difficulty, so

we use counts of the various POS tags and their bigrams

as well. We also calculate lexical density as an overall

metric for semantic difficulty; this is simply a ratio of

the count of all lexically important POS tags such as

nouns, adjectives and adverbs to the count of all tags.

3.4 Statistical metrics

These are other features that may reflect syntactic
complexity and semantic difficulty, such as word length,

word count, sentence count and paragraph count. These

are converted to z-scores on standardized scales which
work better with the SVM model [7].

3.5 Spelling errors

By checking every word against a corpus of English
words from Python’s NLTK library, we obtain a count

of spelling errors for each essay.

3.6 Type-token ratio

A metric for lexical diversity; essentially a ratio of the

number of unique words in each essay to the overall

number of tokens.

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 2, February 2018
ISSN (Online) : 2348-6090
www.IJCAT.org

3.7 Support Vector Machine

The Support Vector Machine (SVM) is a supervised

classification algorithm which was first proposed by

Vladimir N. Vapnik in 1963. In 1992, he suggested a
way to create non-linear classifiers by applying the

kernel to maximum-margin hyperplanes and has since

attracted a high degree of interest in the machine

learning research community [8]. SVMs have been

deployed in a wide range of real world problems such as

text categorization, handwritten digit recognition, tone

recognition, image classification, object detection and

data classification. It has extensive support for kernels to

deal with non-linearity of data and it needs to be finely

tuned to get the best results [8]. NLP tasks typically

represent instances by very high dimensional but very
sparse feature vectors, which leads to positive and

negative examples being distributed into two distinctly

different areas of the feature space. This is particularly

helpful for the SVM to search a classification hyperplane

in feature space and for the generalisation capability of

the classifier as well. That is a main reason why the

SVM can achieve very good results in a variety of NLP

tasks [9]. The algorithm takes longer time to train

compared to other classifiers because of vector

calculations, which are mathematically intensive. The

time taken to predict is very low, which is desirable for

our project since after training the model once, it can
score the essays very fast.

4. Result

We used exact one-to-one correspondence percentages

and percentage accuracy allowing for an error of one

point from the actual scores to evaluate our model. The

results for each essay set are in the Table 4.1.

 Figure 4.1

Essay

Set

Exact Accuracy Accuracy allowing

for one-point Error

1 0.51 0.98

2 0.51 0.96

3 0.53 0.70

4 0.60 0.85

5 0.55 0.87

6 0.49 0.88

7 0.45 0.92

8 0.40 0.92

Table 4.1

Figure 4.1 is a confusion matrix of the results obtained

for essay set 1. For the essays belonging to every actual

human-graded score, this confusion matrix shows their

distribution across the predicted scores. As can be seen,

the accuracy of the algorithm is less than 60% when

using a strict one-to-one method of evaluating the

predicted classes against the actual grades, but allowing

for an error of 1 point gives a high accuracy. The

confusion matrix shows that most essays were either

rated accurately or very close to the gold class.

5. Conclusion

In this paper, we identified a classification-based

approach to solve the problem of grading literary

materials manually. We used Natural Language

Processing to extract various features which are

characteristic of a good writing. The accuracy of model

could be further improved if a metric for similarity

between the essay topic/ problem statement were added.
The topic on which essay was written was not described

in the dataset we used, but this is mostly known in most

of the exams/ standardized tests. The model we designed

performed reasonably well with an allowance of one

point in marking and could definitely be used to grade

written essays/ literary materials.

References

[1] Kaggle. The Hewlett Foundation: Automated Essay

Scoring. Available from:
https://www.kaggle.com/c/asap-aes.

[2] Valenti, S., F. Neri, and A. Cucchiarelli, An overview

of current research on automated essay grading.

Journal of Information Technology Education:
Research, 2003. 2(1): p. 319-330.

[3] Shermis, M.D., et al., Automated essay scoring:

Writing assessment and instruction. International

encyclopedia of education, 2010. 4(1): p. 20-26.

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 2, February 2018
ISSN (Online) : 2348-6090
www.IJCAT.org

21

[4] Drolia, S., et al., Automated Essay Rater using

Natural Language Processing. International Journal
of Computer Applications, 2017. 163(10).

[5] Ramineni, C., et al., Evaluation of the e�rater®

Scoring Engine for the GRE® Issue and Argument

Prompts. ETS Research Report Series, 2012.
2012(1).

[6] Drucker, H., D. Wu, and V.N. Vapnik, Support

vector machines for spam categorization. IEEE
Transactions on Neural networks, 1999. 10(5): p.

1048-1054.

[7] Abhishek Suresh and Manuj Jha, Automated Essay

Grading Python Code. Available from:
https://github.com/absu5530/AES/blob/master/AES.
py

[8] Durgesh, K.S. and B. Lekha, Data classification

using support vector machine. Journal of Theoretical
and Applied Information Technology, 2010. 12(1): p.

1-7.

[9] Li, Y., K. Bontcheva, and H. Cunningham, Adapting

SVM for data sparseness and imbalance: a case

study in information extraction. Natural Language

Engineering, 2009. 15(2): p. 241-271.

Abhishek Suresh received his BTech in Mechanical
Engineering from Manipal Institute of Technology, Karnataka,
India. He worked as a Trainee Decision Scientist at Mu Sigma
Business Solutions Pvt. Ltd., Bengaluru, India after graduation.
Currently he is pursuing Master’s in Computational Linguistics,
Analytics, Search and Informatics at the University of Colorado
Boulder. His interests include computational linguistics, NLP,
machine learning and text analytics.

Manuj Jha received his BE in Telecommunication from R.V.
College of Engineering, Bengaluru, India. He worked as a
Trainee Decision Scientist at Mu Sigma Business Solutions Pvt.
Ltd., Bengaluru, India after graduation. Currently he is pursuing
Master’s in Data Science at Texas Tech University. His interests
include NLP, machine learning and descriptive analytics.

