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Abstract - Graph based image segmentation techniques are 

considered to be one of the most efficient segmentation 

techniques. Which are mainly used as time & space efficient 

methods for real time applications Image segmentation is the 

first step of image Mining. Due to the limited resources of the 

Sensor devices, we need time and space efficient methods of 

image segmentation In this paper, we propose an improving 

to the graph Base image segmentation method. Already 

describe in the literature and considered as the most effective 

method with satisfactory segmentation result. This is the 

preprocessing step of our online image Mining Approach. We 

contribute to the method by Re-defining the Internal 

difference used to define the property of the Components and 

threshold function the conducted Experiment demonstrates 

the efficiency and effectiveness of the adjusted method. 
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1. Introduction 
 

Sensor devices are widely used for monitoring purposes. 

Useful knowledge is expected to be obtained from the 

image sequences taken by sensor devices such knowledge 

may include image data patterns, image data relationships, 

or other patterns not explicitly stored in the images and 

between images and other alphanumeric data [9]. Image 

mining techniques are commonly used to extract such 
knowledge. However, an image is simply a collection of 

pixels. It is quite difficult to extract the knowledge (the 

high-level information) Directly from the level pixel 

collection.Image segmentation is usually the first step in 

image Mining [6], aiming to partition the image into 

perceptual meaningful regions. As a result, it is essential to 

have an image segmentation method as the preprocessing 

step of any image mining approach. As we are developing 

an online image mining approach; our initial findings are 

centered around an efficient and effective image 

segmentation method. In this paper, we describe the basic 

elements of the image segmentation problem, and compare 
the existing segmentation approaches in terms of image 

features, similarity measurement and the segmentation 

algorithm. Most prior works on image segmentation focus 

on improving the segmentation results. However, as we 

put the image segmentation problem in the context of 

sensor devices with limited resources, we should put equal 

emphasis on efficiency (time and space complexity) and 

efectiveness (quality of the segmentation result). We 

analyze the possible techniques on each element that can 

be used to improve the efficiency of image segmentation. 
As the methods described in the literature are concerned, 

the graph-based image segmentation method proposed 

recently by Felzenszwalb et a1 [4] is the most efficient 

with satisfactory segmentation result. However, we have 

successfully identified several drawbacks and weaknesses 

of this method. Consequently, we have developed a more 

effective and efficient method that handles the identified 

drawbacks and weakness .Explicitly, the method of 

Felzenszwalb et at [4] uses internal difference as a 

measurement to describe the property of components. It is 

one of the key elements to guide the segmentation process. 
In order to make the algorithm fast, Felzenszwalb et a1 [4] 

defined internal difference on the extreme values, which 

is not an accurate description of the components. So, in 

this paper we re-define the internal difference such that it 

gives a more accurate and stable description of the 

components without increasing the complexity of the 

algorithms. Furthermore, the method of Felzenszwalb et 

a1 [4] uses a threshold function   that require parameter K 

to control the size of the segmented region. 

 

However, no quantitative relationship between the value of 
k and the segment size is given. It's very difficult for users 

to choose an appropriate parameter value for an expected 

segment size. In this paper, first we analyze how the 

parameter k affects the segmentation process; and then we 

identify the stop merging condition with respect to k. 

Inspired by the stop merging condition, we re-define the 

threshold function Such that parameter k becomes 

independent of the edge weight scale. Based on this, we 

further improve the threshold function by taking the 
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number of components into consideration. When there are 

more components than expected, the threshold function 

"encourage” merging. When there are fewer components 

than expected, the threshold function "discourage" 

merging. The reported experimental results demonstrate 

the efficiency and effectiveness of the proposed approach. 

The rest of the paper is organized as follows. Section 2 

describes image segmentation for sensor monitoring 

applcations. Section 3 presents the basic improvement to 

the graph-based method. Section 4 describes the 
implementation. Section 5 reports the experimental results. 

Section 6 presents the discussion. Section 7 is summary 

and conclusions. 

 

2. Image Segmentation for Sensor Monitoring 

Applications 
 
Most prior works on image segmentation focus on 

improving the segmentation results as long as the time 
complexity is not worse than polynomial. However, as we 

put the image segmentation problem in the context of 

sensor devices with limited resources, we should put equal 

emphasis on efficiency (time and space complexity) and 

effectiveness (quality of the segmentation result). In a 

sensor monitoring application, the images are constantly 

streaming in, the segmentation process is expected to 

compete in real time (a fraction of a second, at most few 

seconds), we need a linear time (at least nearly linear time) 

method that can produce satisfactory results. 

 
The techniques to speed up the segmentation process can 

be classified as follows: 

1. Use simple features [ll]; 

2. Reduce the resolution of the image [l0]; 

3. Use fast transform algorithm (like one-pass 

Wavelet decomposition [18]); 

4. Use efficient similarity measurement [4]; 

 

Using simple features is definitely a good choice if the 

image itself is quite simple; for example, for images 

consisting of solid color regions. Bruce et al [ll] proposed 

a fast and cheap image segmentation method for 
interactive robots with O(m) time complexity, where m is 

the number of pixels in the image. However, real world 

images are seldom such simple as a combination of 

constant regions. More often they contain both texture and 

non-texture components. Using one simple local feature 

usually makes little sense 

 

Due to the advantages of wavelet transform, it is widely 

used in image segmentation. Kim et al [l0] proposed a fast 

image segmentation method based on multi-resolution 

analysis and wavelet. Multi-resolution analysis is to view 
the original signal at various levels of resolution. When 

applying a wavelet transform to the original signal, the 

trend of the signal is approximated by the scaling 

coefficients. The scaling coefficients generated at level m 

give the approximation of the original signal at & of the 

original resolution. The following processing is based on 

the low-resolution signal. It is much faster than on the 

original signal. However, resolution-reduction misses 

some information; it simply sacrifices effectiveness in 

exchange of efficiency. The wavelet transformation brings 

extra overhead to the segmentation process. In the context 

of sensor devices with limited resources, we can not afford 
the extra cost. The recently proposed one-pass wavelet 

decomposition technique [18] might help addressing this 

problem. Furthermore, finding appropriate similarity 

measurement is an important way to improve the 

efficiency. In image segmentation methods, the similarity 

measurement is the key factor in determining the 

segmentation quality. Although simple measurement 

usually means fast processing, it produces poor results 

under most circumstances because simple measurement 

only considers local properties of the pixels. However, 

robust measurement, which considers the global properties 

of the image often implies high computation [2]. So, it is a 
big challenge to choose an appropriate measurement to 

enable fast processing while maintaining acceptable 

results. The recently proposed graph-based method [4] 

uses a good measurement, which looks like a kind of 

"upper bound"; it maintains the algorithm at complexity of 

O(m1ogm). But, a slight relaxation of the condition would 

make the problem NP-hard. More important, this 

measurement captures the global properties of the image 

and produces good result. To the best of our knowledge, 

this method [4] is the fastest one with satisfactory 

segmentation results. It is claimed to be suitable for real 
time applications. In the following section, we analyze the 

key element of its similarity measurement, namely the 

threshold function, and propose an interesting 

improvement. 

 

3. Improvements to the Graph-Based Method 
 

The image segmentation algorithm described in [4] starts 

with a trivial segmentation, with each component 

containing one pixel, and repeatedly merges pairs of 

components based on the following merge condition: 

 

Di f f (Cl, C2) ≤ Int(C1) + T(C1) and 

Dif f (Cl, C2) ≤ Int(C2) + T(C2)                              (1) 

 

Where Diff (Cl,C2) is the difference between components 

Cl and C2; Int(Cl) and Int(C2) are the internal differences 

of Cl and C2, respectively; T (C) = k/|C| is the threshold 
function. Parameter k controls the size of the components 

in the segmentation. Felzenszwalb et al [4] state that large 

k favors large regions; but they do not give any 

quantitative relationship between k and the size of the 
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regions. Therefore, it is hard for the users to give an 

appropriate value of parameter k for an expected 

component size. For example, they use two different k 

values, 150 and 300. No explanation is given on why 150 

or 300 are chosen instead of other Values. If the k value is 

determined by trial and error for each particular image, 

this method becomes infeasible in real time applications, 

mainly in the context of sensor devices. 

 

In Condition (I), the internal difference of a component, 
Int(C), is defined to be the largest edge weight of the 

minimal spanning tree. The difference between two 

components, Diff (Cl, C2), is defined to be the smallest 

edge weight between them. The only purpose to take 

extreme values in these definitions is to make the 

algorithm fast, with complexity O(n1ogn). The extreme 

values are not accurate descriptions of the components. 

Moreover, they are sensitive to noise. Although it is 

difficult to improve the definition of Diff (Cl, C2) as it has 

been proven that a slight relaxation would turn the 

problem NP-hard, we may improve the definition of Int(C) 

such that it gives a more accurate description of the 
component and reduce the influence from noise pixels. 

The only requirement is that the computation of Int(C) 

must take constant time at each step. 

 

3.1 Analysis of the Threshold Function 
 

First, we analyze how the threshold function affects the 

segmentation process. In the algorithm, the edges are 

sorted in a non-decreasing weight order. This means the 
weight of edges connecting two components is always 

larger than the weight of edges inside each Component. 

The threshold function T(C) = k/|C| is necessary for the 

algorithm to work because without the threshold function 

the difference between two components Cl and C2 is 

always larger than the internal differences of Cl and C2. 

As the edges are processed in a non-decreasing eight 

order, the edge causing the merge of Cl and C2 must be 

the smallest weighted edge connecting C1 and C2; the 

weight of this edge is Di f f (Cl, C2). After merging Cl and 

C2, this edge becomes the largest weighted edge in the 
merged component Cl U C2; we have Diff (Cl, C2) = 

Int(Cl U C2). Similarly, Int(C1) and Int(C2) are weights of 

the last processed edges in forming Cl and C2, 

respectively. 

Let E = {el, e2 . . . en) be the set of edges in nondecreasing 

weight order, W(ei) ≤ W(ei + 1) for i = 1,2.. . n - 1. 

Condition (1) can be rewritten as 

  
K ≥ |C1| (W (ep) - W (ei)) and 

 

K |C2| (W (ep) – W (ei))                      (2) 

 
 

where p > i and p > j , e, is the current edge connecting Cl 

and C2, and ei is the last processed edge in forming Cl, 

and ej is the last processed edge in forming C2 .Lemma 1 

in [4] states that if a component Cl does not merge with 

component C2 as a result of the fact that Diff(C1,C2) > 

Int(C1) + k/ |Cl| , Cl will not merge with any other 

components. Based on our rewritten merge condition, it is 

equivalent to say that: 

 

If 
K < | C| (W (ep) – W (ei))                       (3)     

 
then component Cl will not merge with any other 

components and it must be in the final segmentation 

because the weight of edges after e, is greater than W(e,) 

.So we can generalize Lemma 1 from [4] and get stop 

merging condition for all the components. 

Theorem 1: Assume at certain step, the minimum size of 

current components is | | |C|min, and the current edge 

under consideration is et; then the stop-merging condition 

is:  

 
K<|C|min(W (et) - W (et-1))                  (4)  

 

In other words, if Condition (4) is satisfied, then all current 

components are in the final segmentation. We do not need 

to consider the edges after the current edge and the 

algorithm can stop. 

Proof: : For an arbitrary pair of components Cx, and Cy, 

we have |Cx| ≥   |Cx|min and  

|Cy| ≥ |C|min- Let ex be the largest weighted edge in Cx, 

and ey the largest weighted edge in Cy. As ex and ey were 

processed before et, W(ex) ≤ W(et-1) and W(ey) ≤ W(et-
1). 

 

Let exy, be any unprocessed edge connecting Cx, and Cy, 

W(exy) ≥ W(et). We have k < |C|min(W(et) -W(et-1))≤ 

|Cx|(W(exy)- W(ex)) and k<|C| min(W(et)- W(et-1))≤ 

|Cy|(W(exy)-W(ey)). 

 

From Lemma 1, both Cx and Cy, will not merge with 

other components. Since Cx, and Cy, are arbitrarily 

chosen, no merge will happen in the following steps. By 

analyzing Theorem 1, we may think of using Condition (4) 

as the stopping condition of the algorithm. If Condition (4) 
is satisfied, the edges after the current edge will not cause 

merges any more, and the algorithm can stop without 

affecting the final segmentation.Theoretically, this is true. 

However, as real world images are concerned, there exist 

noisy pixels, which do not merge with any other 

components. As a result, some single-pixel components 

exist in the final Segmentation. Even such noisy pixel 

could make the stop-merging condition practically 

meaningless. Although the stop merging condition can not 

be directly applied in practice, it gives a quantitative 



IJCAT - International Journal of Computing and Technology, Volume 3, Issue 5, May 2016        
ISSN : 2348 - 6090 
www.IJCAT.org 

 

 

304 

 

description of parameter k in terms of component size and 

edge weight differences. From this, we know that the size 

of components in the final segmentation depends on 

parameter k and the difference in edge weight. As the edge 

weight is defined based on properties of the pixels, users 

would not know the magnitude of edge weights. For a 

given image, different definitions of the edge weight 

require different k values to produce the same result. 

Therefore, to determine an appropriate parameter k, users 

have no idea of the relationship between component size 
and a particular k value. In next section, we redefine the 

threshold function T(C) such that parameter k is 

independent of the scale of edge weight. That is, no matter 

how the edge weight is scaled, same k value produces 

same segmentation. 

 

3.2 New Threshold Function 
 

Given an image represented by a weighted graph, we 
denote the largest edge weight by Wma,, the smallest edge 

weight by Wmi,. We define the threshold function as:  

 

T(C) = K (Wmax- Wmin) / |C|                            (5)    

                           

Based on Condition (5), we may rewrite the merge 

condition as: 

K ≥ |C1| (W (ep) – W (ei) / (Wmax – Wmin)  

and                                

K ≥ |C2| (W (ep) – W (ej) / (Wmax – Wmin)       (6)                      

 

In Condition (6), the current edge weight difference is 
normalized by total edge weight differences. Therefore, 

parameter k becomes independent of the edge weight 

scale. More important, in the sorted-edge list, Wmax - 

Wmin is equal to W (en) - W (el). The new 

 

Threshold function specified in Condition (5) can be 

computed in constant time; and thus would not increase 

the complexity.Given an image; we expect a moderate 

number of components in the segmentation. The number 

of components should also be considered in the threshold 

function. In the segmentation process, when there is a 
large number of components, the threshold function should 

"encourage" merging. When the number of components 

decreases, the threshold function should "discourage" 

merging. In other words, the more components there are 

the stronger evidence we need for a boundary between two 

components. Based on this idea, we modified the threshold 

function as: 

 

T(C) = (Wmax – Wmin / |C|) * (Num / K)          (7) 

          

Where Num, is the number of components. Parameter k 

can be regarded as the expected number of components. 
Large k produces more components. Note that k does not 

equal to the number of components in the segmentation. 

The algorithm starts with Numc = |V| (|V| is the number of 

pixels), and each merge decreases Num, by one. 

Computing Function (7) takes constant time; it does not 

increase the complexity. Based on Function (7), the stop 

merge condition for a component C becomes: 

 

K>((Wmax- Wmin)Num / |C| (W (ep)- W(ei))         

                                                                                 (8)         

 

3.3 New Internal Difference 
 

In this section, we redefine the internal difference, Int(C), 

such that it gives a more accurate description of 

component C. We define the internal difference of 

component C as the average edge weight in the minimal 

Spanning tree of C. Formally, 

 

 
Where N is the number of edges in the minimal spanning 

tree of C. 

 

In Equation (9), Int(C) takes the average value instead of 

the maximum value. Few noisy pixels would not have 

great impact. In other words, Equation (9) reduces the 

influence from noisy pixels. It is more stable than the 

original definition. More important, it does not increase 

the time complexity. As we know, n-nodes tree has n - 1 

edges; here we have N = ICI - 1. Since each component C 

maintains its size ICI, computing Equation (9) takes 
constant time. 

 

4. The Implementation 
 

The author of [4] provided an implementation for the grid 

graph. In this implementation, the image is smoothed by a 
Gaussian filter to remove noise. The edge weight is 

defined to be the color difference between neighbor pixels. 

After the graph is segmented, the segmentation result is 

post-processed by combining all the components with size 

below a user-specified Threshold. We borrowed some of 

the code from the author's implementation, like the 

Gaussian filter and the data structure to store the 

components. We did the following modifications: 

 

1. We used the threshold function specified in Equation 

(7); 

2. We used the internal difference specified in Equation 
(9); 

3. We implemented the nearest neighbor graph: each pixel 

has edges connecting 10 nearest neighbors on the 5-

dimensional feature space (r, g, b, x, y), where the triplet 

(r, g, b) represent the color value of the pixel and the pair 

(x,y ) represent the location of the pixel. The edge weight 
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is the Euclidean distance on that space. For efficiency, we 

use the nearest neighbors within distance 10. 

 

Finally, in our implementation, we did not do any post-

processing and achieved outstanding results as reported 

next in Section 5. 

 

5. Experimental Results 
 
In the experiment, we compare our method with the work 

described in [4], which is the most fast one with 

satisfactory segmentation result; it is also the most similar 

because ours is mainly based on handling the weaknesses 

of the approach described in [4]. we have proven that our 

method has the same time complexity with that described 

in [4], we do not compare the running time of the the 

approaches. We only compare the segmentation result and 
the segmented images. We use the test images from the 

Most of the images are outdoor pictures with texture 

components. In order to compare the actual segmentation 

performance with the work of [4], we use the same piece 

of code for image pre-processing, i.e., a Gaussian filters to 

remove image noise.  

 

For the same purpose, our Implementation does not 

perform any post-processing. We compare our segmented 

images before the post processing stage. In the experiment, 

we compare the images in both grid graph and nearest 
neighbor graph settings. For grid graph, each pixel has 

edges connecting its eight physically adjacent neighbors. 

The edge Weight is defined to be the color difference 

between the neighboring pixels. Since the authors of [4] 

provided an implementation for the grid graph, we use as 

much the same code as possible and only modify the 

threshold function as specified in Function (7) and the 

internal difference specified by Equation (9).For nearest 

neighbor graph, each pixel has edges connecting 10 

nearest neighbors on the 5-dimensional feature space (r, g, 

b, x, y), where (r, g, b) represent the color value of the 

pixel and (x, y) represent the location of the pixel. The 
edge Weight is the Euclidean distance on that space.  

 

In establishing the edges connections, we use a simple 

nearest neighbor search algorithm and search nearest 

neighbors within distance 10.We found that for both 

methods, the nearest neighbor graph setting produces 

much better results than the grid graph setting. Here, we 

compare three of the segmented images using nearest 

neighbor graph. The first example is shown in Figure la; 

the input is the ground-water image. According to human 

perceptton, We expect that the sky in the segmented image 
is identified as one component, the buildings in distance is 

a component, and the water is a component. We do not 

expect the whole piece of land close to the viewer to be 

one component because the difference between various 

parts is perceptually significant (e.g., the difference 

between the green grass from other parts). Figure l b is the 

segmented image produced by the method described in [4] 

with parameter value 300. In Figure l b , the sky is still in 

two parts, but the green grass on the land has been merged 

with the surrounding parts. In order to make the sky one 

component, we need to increase the parameter value. 

Figure l  is the segmented image using 400 as the 

parameter value. However, to separate the green grass 

from the other Part, we need to decrease the parameter 
value. 

 

 
 

Figure 1. Ground-water: a) The original input image; b) Segmented 

image by the original method with =300; c) Segmented image by the 

original method with k=400; d) Segmented image by our method. 

 

Therefore, it is impossible to produce a satisfactory result 
no matter what parameter value is chosen. The reason is 

that the method described in [4] uses the maximum edge 

weight to describe a component, each time a pixel is 

merged with a component; the newly added edge weight is 

used to describe the component. In this example, although 

the difference between the green grass with surrounding 

parts on the land is perceptually significant, the boundary 

is not clear. There exist pixels that are between the typical 

pixels of the two adjacent parts. These pixels work as a 

transition and incorrectly merge the two perceptually 

different components. Our average edge weight 
description of component is more stable. Figure Id shows 

the segmented image by our method. Here, the sky is one 

component and the green grass is separated from the 

surrounding parts on the land. 
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6. Summary and Conclusion 
 

In this paper, we compared the existing segmentation 

approaches in terms of image features, similarity 

measurement and segmentation algorithm and discussed 
the possible techniques to improve the efficiency of image 

segmentation for sensor monitoring applications. We 

analyzed the graph-based image segmentation method 

described in [4], which is reported in the literature as the 

fastest one with satisfactory segmentation result we 

proposed major improvement to this method.. We re-

defined the internal difference to give a more accurate and 

stable description of components with no increase of time 

complexity .We re-define the threshold function such that 

it Can adaptively guide the segmentation process in-

dependent of the edge weight scale. Finally, the reported 

experimental results on a well Learn known database of 
images demonstrate the effective-ness and efficiency of 

the proposed approach. 
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