
IJCAT - International Journal of Computing and Technology, Volume 3, Issue 5, May 2016
ISSN : 2348 - 6090
www.IJCAT.org

301

Effective Image Segmentation using Graph Base

Method

1 Yeshwant Deodhe, 2 Shashant Jaykar, 3 Rohit Himte

1,2,3 Assist.Prof.Electronics engg.deptt. Rajiv Gandhi college of engg & research. Nagpur,

RTMNU,(M.S) India.

Abstract - Graph based image segmentation techniques are

considered to be one of the most efficient segmentation

techniques. Which are mainly used as time & space efficient

methods for real time applications Image segmentation is the

first step of image Mining. Due to the limited resources of the

Sensor devices, we need time and space efficient methods of

image segmentation In this paper, we propose an improving

to the graph Base image segmentation method. Already

describe in the literature and considered as the most effective

method with satisfactory segmentation result. This is the

preprocessing step of our online image Mining Approach. We

contribute to the method by Re-defining the Internal

difference used to define the property of the Components and

threshold function the conducted Experiment demonstrates

the efficiency and effectiveness of the adjusted method.

Keywords - Graph Base Image Segmentation Method, New

Threshold Function, Sensor Devices.

1. Introduction

Sensor devices are widely used for monitoring purposes.

Useful knowledge is expected to be obtained from the

image sequences taken by sensor devices such knowledge

may include image data patterns, image data relationships,

or other patterns not explicitly stored in the images and

between images and other alphanumeric data [9]. Image

mining techniques are commonly used to extract such
knowledge. However, an image is simply a collection of

pixels. It is quite difficult to extract the knowledge (the

high-level information) Directly from the level pixel

collection.Image segmentation is usually the first step in

image Mining [6], aiming to partition the image into

perceptual meaningful regions. As a result, it is essential to

have an image segmentation method as the preprocessing

step of any image mining approach. As we are developing

an online image mining approach; our initial findings are

centered around an efficient and effective image

segmentation method. In this paper, we describe the basic

elements of the image segmentation problem, and compare
the existing segmentation approaches in terms of image

features, similarity measurement and the segmentation

algorithm. Most prior works on image segmentation focus

on improving the segmentation results. However, as we

put the image segmentation problem in the context of

sensor devices with limited resources, we should put equal

emphasis on efficiency (time and space complexity) and

efectiveness (quality of the segmentation result). We

analyze the possible techniques on each element that can

be used to improve the efficiency of image segmentation.
As the methods described in the literature are concerned,

the graph-based image segmentation method proposed

recently by Felzenszwalb et a1 [4] is the most efficient

with satisfactory segmentation result. However, we have

successfully identified several drawbacks and weaknesses

of this method. Consequently, we have developed a more

effective and efficient method that handles the identified

drawbacks and weakness .Explicitly, the method of

Felzenszwalb et at [4] uses internal difference as a

measurement to describe the property of components. It is

one of the key elements to guide the segmentation process.
In order to make the algorithm fast, Felzenszwalb et a1 [4]

defined internal difference on the extreme values, which

is not an accurate description of the components. So, in

this paper we re-define the internal difference such that it

gives a more accurate and stable description of the

components without increasing the complexity of the

algorithms. Furthermore, the method of Felzenszwalb et

a1 [4] uses a threshold function that require parameter K

to control the size of the segmented region.

However, no quantitative relationship between the value of
k and the segment size is given. It's very difficult for users

to choose an appropriate parameter value for an expected

segment size. In this paper, first we analyze how the

parameter k affects the segmentation process; and then we

identify the stop merging condition with respect to k.

Inspired by the stop merging condition, we re-define the

threshold function Such that parameter k becomes

independent of the edge weight scale. Based on this, we

further improve the threshold function by taking the

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 5, May 2016
ISSN : 2348 - 6090
www.IJCAT.org

302

number of components into consideration. When there are

more components than expected, the threshold function

"encourage” merging. When there are fewer components

than expected, the threshold function "discourage"

merging. The reported experimental results demonstrate

the efficiency and effectiveness of the proposed approach.

The rest of the paper is organized as follows. Section 2

describes image segmentation for sensor monitoring

applcations. Section 3 presents the basic improvement to

the graph-based method. Section 4 describes the
implementation. Section 5 reports the experimental results.

Section 6 presents the discussion. Section 7 is summary

and conclusions.

2. Image Segmentation for Sensor Monitoring

Applications

Most prior works on image segmentation focus on

improving the segmentation results as long as the time
complexity is not worse than polynomial. However, as we

put the image segmentation problem in the context of

sensor devices with limited resources, we should put equal

emphasis on efficiency (time and space complexity) and

effectiveness (quality of the segmentation result). In a

sensor monitoring application, the images are constantly

streaming in, the segmentation process is expected to

compete in real time (a fraction of a second, at most few

seconds), we need a linear time (at least nearly linear time)

method that can produce satisfactory results.

The techniques to speed up the segmentation process can

be classified as follows:

1. Use simple features [ll];

2. Reduce the resolution of the image [l0];

3. Use fast transform algorithm (like one-pass

Wavelet decomposition [18]);

4. Use efficient similarity measurement [4];

Using simple features is definitely a good choice if the

image itself is quite simple; for example, for images

consisting of solid color regions. Bruce et al [ll] proposed

a fast and cheap image segmentation method for
interactive robots with O(m) time complexity, where m is

the number of pixels in the image. However, real world

images are seldom such simple as a combination of

constant regions. More often they contain both texture and

non-texture components. Using one simple local feature

usually makes little sense

Due to the advantages of wavelet transform, it is widely

used in image segmentation. Kim et al [l0] proposed a fast

image segmentation method based on multi-resolution

analysis and wavelet. Multi-resolution analysis is to view
the original signal at various levels of resolution. When

applying a wavelet transform to the original signal, the

trend of the signal is approximated by the scaling

coefficients. The scaling coefficients generated at level m

give the approximation of the original signal at & of the

original resolution. The following processing is based on

the low-resolution signal. It is much faster than on the

original signal. However, resolution-reduction misses

some information; it simply sacrifices effectiveness in

exchange of efficiency. The wavelet transformation brings

extra overhead to the segmentation process. In the context

of sensor devices with limited resources, we can not afford
the extra cost. The recently proposed one-pass wavelet

decomposition technique [18] might help addressing this

problem. Furthermore, finding appropriate similarity

measurement is an important way to improve the

efficiency. In image segmentation methods, the similarity

measurement is the key factor in determining the

segmentation quality. Although simple measurement

usually means fast processing, it produces poor results

under most circumstances because simple measurement

only considers local properties of the pixels. However,

robust measurement, which considers the global properties

of the image often implies high computation [2]. So, it is a
big challenge to choose an appropriate measurement to

enable fast processing while maintaining acceptable

results. The recently proposed graph-based method [4]

uses a good measurement, which looks like a kind of

"upper bound"; it maintains the algorithm at complexity of

O(m1ogm). But, a slight relaxation of the condition would

make the problem NP-hard. More important, this

measurement captures the global properties of the image

and produces good result. To the best of our knowledge,

this method [4] is the fastest one with satisfactory

segmentation results. It is claimed to be suitable for real
time applications. In the following section, we analyze the

key element of its similarity measurement, namely the

threshold function, and propose an interesting

improvement.

3. Improvements to the Graph-Based Method

The image segmentation algorithm described in [4] starts

with a trivial segmentation, with each component

containing one pixel, and repeatedly merges pairs of

components based on the following merge condition:

Di f f (Cl, C2) ≤ Int(C1) + T(C1) and

Dif f (Cl, C2) ≤ Int(C2) + T(C2) (1)

Where Diff (Cl,C2) is the difference between components

Cl and C2; Int(Cl) and Int(C2) are the internal differences

of Cl and C2, respectively; T (C) = k/|C| is the threshold
function. Parameter k controls the size of the components

in the segmentation. Felzenszwalb et al [4] state that large

k favors large regions; but they do not give any

quantitative relationship between k and the size of the

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 5, May 2016
ISSN : 2348 - 6090
www.IJCAT.org

303

regions. Therefore, it is hard for the users to give an

appropriate value of parameter k for an expected

component size. For example, they use two different k

values, 150 and 300. No explanation is given on why 150

or 300 are chosen instead of other Values. If the k value is

determined by trial and error for each particular image,

this method becomes infeasible in real time applications,

mainly in the context of sensor devices.

In Condition (I), the internal difference of a component,
Int(C), is defined to be the largest edge weight of the

minimal spanning tree. The difference between two

components, Diff (Cl, C2), is defined to be the smallest

edge weight between them. The only purpose to take

extreme values in these definitions is to make the

algorithm fast, with complexity O(n1ogn). The extreme

values are not accurate descriptions of the components.

Moreover, they are sensitive to noise. Although it is

difficult to improve the definition of Diff (Cl, C2) as it has

been proven that a slight relaxation would turn the

problem NP-hard, we may improve the definition of Int(C)

such that it gives a more accurate description of the
component and reduce the influence from noise pixels.

The only requirement is that the computation of Int(C)

must take constant time at each step.

3.1 Analysis of the Threshold Function

First, we analyze how the threshold function affects the

segmentation process. In the algorithm, the edges are

sorted in a non-decreasing weight order. This means the
weight of edges connecting two components is always

larger than the weight of edges inside each Component.

The threshold function T(C) = k/|C| is necessary for the

algorithm to work because without the threshold function

the difference between two components Cl and C2 is

always larger than the internal differences of Cl and C2.

As the edges are processed in a non-decreasing eight

order, the edge causing the merge of Cl and C2 must be

the smallest weighted edge connecting C1 and C2; the

weight of this edge is Di f f (Cl, C2). After merging Cl and

C2, this edge becomes the largest weighted edge in the
merged component Cl U C2; we have Diff (Cl, C2) =

Int(Cl U C2). Similarly, Int(C1) and Int(C2) are weights of

the last processed edges in forming Cl and C2,

respectively.

Let E = {el, e2 . . . en) be the set of edges in nondecreasing

weight order, W(ei) ≤ W(ei + 1) for i = 1,2.. . n - 1.

Condition (1) can be rewritten as

K ≥ |C1| (W (ep) - W (ei)) and

K |C2| (W (ep) – W (ei)) (2)

where p > i and p > j , e, is the current edge connecting Cl

and C2, and ei is the last processed edge in forming Cl,

and ej is the last processed edge in forming C2 .Lemma 1

in [4] states that if a component Cl does not merge with

component C2 as a result of the fact that Diff(C1,C2) >

Int(C1) + k/ |Cl| , Cl will not merge with any other

components. Based on our rewritten merge condition, it is

equivalent to say that:

If
K < | C| (W (ep) – W (ei)) (3)

then component Cl will not merge with any other

components and it must be in the final segmentation

because the weight of edges after e, is greater than W(e,)

.So we can generalize Lemma 1 from [4] and get stop

merging condition for all the components.

Theorem 1: Assume at certain step, the minimum size of

current components is | | |C|min, and the current edge

under consideration is et; then the stop-merging condition

is:

K<|C|min(W (et) - W (et-1)) (4)

In other words, if Condition (4) is satisfied, then all current

components are in the final segmentation. We do not need

to consider the edges after the current edge and the

algorithm can stop.

Proof: : For an arbitrary pair of components Cx, and Cy,

we have |Cx| ≥ |Cx|min and

|Cy| ≥ |C|min- Let ex be the largest weighted edge in Cx,

and ey the largest weighted edge in Cy. As ex and ey were

processed before et, W(ex) ≤ W(et-1) and W(ey) ≤ W(et-
1).

Let exy, be any unprocessed edge connecting Cx, and Cy,

W(exy) ≥ W(et). We have k < |C|min(W(et) -W(et-1))≤

|Cx|(W(exy)- W(ex)) and k<|C| min(W(et)- W(et-1))≤

|Cy|(W(exy)-W(ey)).

From Lemma 1, both Cx and Cy, will not merge with

other components. Since Cx, and Cy, are arbitrarily

chosen, no merge will happen in the following steps. By

analyzing Theorem 1, we may think of using Condition (4)

as the stopping condition of the algorithm. If Condition (4)
is satisfied, the edges after the current edge will not cause

merges any more, and the algorithm can stop without

affecting the final segmentation.Theoretically, this is true.

However, as real world images are concerned, there exist

noisy pixels, which do not merge with any other

components. As a result, some single-pixel components

exist in the final Segmentation. Even such noisy pixel

could make the stop-merging condition practically

meaningless. Although the stop merging condition can not

be directly applied in practice, it gives a quantitative

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 5, May 2016
ISSN : 2348 - 6090
www.IJCAT.org

304

description of parameter k in terms of component size and

edge weight differences. From this, we know that the size

of components in the final segmentation depends on

parameter k and the difference in edge weight. As the edge

weight is defined based on properties of the pixels, users

would not know the magnitude of edge weights. For a

given image, different definitions of the edge weight

require different k values to produce the same result.

Therefore, to determine an appropriate parameter k, users

have no idea of the relationship between component size
and a particular k value. In next section, we redefine the

threshold function T(C) such that parameter k is

independent of the scale of edge weight. That is, no matter

how the edge weight is scaled, same k value produces

same segmentation.

3.2 New Threshold Function

Given an image represented by a weighted graph, we
denote the largest edge weight by Wma,, the smallest edge

weight by Wmi,. We define the threshold function as:

T(C) = K (Wmax- Wmin) / |C| (5)

Based on Condition (5), we may rewrite the merge

condition as:

K ≥ |C1| (W (ep) – W (ei) / (Wmax – Wmin)

and

K ≥ |C2| (W (ep) – W (ej) / (Wmax – Wmin) (6)

In Condition (6), the current edge weight difference is
normalized by total edge weight differences. Therefore,

parameter k becomes independent of the edge weight

scale. More important, in the sorted-edge list, Wmax -

Wmin is equal to W (en) - W (el). The new

Threshold function specified in Condition (5) can be

computed in constant time; and thus would not increase

the complexity.Given an image; we expect a moderate

number of components in the segmentation. The number

of components should also be considered in the threshold

function. In the segmentation process, when there is a
large number of components, the threshold function should

"encourage" merging. When the number of components

decreases, the threshold function should "discourage"

merging. In other words, the more components there are

the stronger evidence we need for a boundary between two

components. Based on this idea, we modified the threshold

function as:

T(C) = (Wmax – Wmin / |C|) * (Num / K) (7)

Where Num, is the number of components. Parameter k

can be regarded as the expected number of components.
Large k produces more components. Note that k does not

equal to the number of components in the segmentation.

The algorithm starts with Numc = |V| (|V| is the number of

pixels), and each merge decreases Num, by one.

Computing Function (7) takes constant time; it does not

increase the complexity. Based on Function (7), the stop

merge condition for a component C becomes:

K>((Wmax- Wmin)Num / |C| (W (ep)- W(ei))

 (8)

3.3 New Internal Difference

In this section, we redefine the internal difference, Int(C),

such that it gives a more accurate description of

component C. We define the internal difference of

component C as the average edge weight in the minimal

Spanning tree of C. Formally,

Where N is the number of edges in the minimal spanning

tree of C.

In Equation (9), Int(C) takes the average value instead of

the maximum value. Few noisy pixels would not have

great impact. In other words, Equation (9) reduces the

influence from noisy pixels. It is more stable than the

original definition. More important, it does not increase

the time complexity. As we know, n-nodes tree has n - 1

edges; here we have N = ICI - 1. Since each component C

maintains its size ICI, computing Equation (9) takes
constant time.

4. The Implementation

The author of [4] provided an implementation for the grid

graph. In this implementation, the image is smoothed by a
Gaussian filter to remove noise. The edge weight is

defined to be the color difference between neighbor pixels.

After the graph is segmented, the segmentation result is

post-processed by combining all the components with size

below a user-specified Threshold. We borrowed some of

the code from the author's implementation, like the

Gaussian filter and the data structure to store the

components. We did the following modifications:

1. We used the threshold function specified in Equation

(7);

2. We used the internal difference specified in Equation
(9);

3. We implemented the nearest neighbor graph: each pixel

has edges connecting 10 nearest neighbors on the 5-

dimensional feature space (r, g, b, x, y), where the triplet

(r, g, b) represent the color value of the pixel and the pair

(x,y) represent the location of the pixel. The edge weight

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 5, May 2016
ISSN : 2348 - 6090
www.IJCAT.org

305

is the Euclidean distance on that space. For efficiency, we

use the nearest neighbors within distance 10.

Finally, in our implementation, we did not do any post-

processing and achieved outstanding results as reported

next in Section 5.

5. Experimental Results

In the experiment, we compare our method with the work

described in [4], which is the most fast one with

satisfactory segmentation result; it is also the most similar

because ours is mainly based on handling the weaknesses

of the approach described in [4]. we have proven that our

method has the same time complexity with that described

in [4], we do not compare the running time of the the

approaches. We only compare the segmentation result and
the segmented images. We use the test images from the

Most of the images are outdoor pictures with texture

components. In order to compare the actual segmentation

performance with the work of [4], we use the same piece

of code for image pre-processing, i.e., a Gaussian filters to

remove image noise.

For the same purpose, our Implementation does not

perform any post-processing. We compare our segmented

images before the post processing stage. In the experiment,

we compare the images in both grid graph and nearest
neighbor graph settings. For grid graph, each pixel has

edges connecting its eight physically adjacent neighbors.

The edge Weight is defined to be the color difference

between the neighboring pixels. Since the authors of [4]

provided an implementation for the grid graph, we use as

much the same code as possible and only modify the

threshold function as specified in Function (7) and the

internal difference specified by Equation (9).For nearest

neighbor graph, each pixel has edges connecting 10

nearest neighbors on the 5-dimensional feature space (r, g,

b, x, y), where (r, g, b) represent the color value of the

pixel and (x, y) represent the location of the pixel. The
edge Weight is the Euclidean distance on that space.

In establishing the edges connections, we use a simple

nearest neighbor search algorithm and search nearest

neighbors within distance 10.We found that for both

methods, the nearest neighbor graph setting produces

much better results than the grid graph setting. Here, we

compare three of the segmented images using nearest

neighbor graph. The first example is shown in Figure la;

the input is the ground-water image. According to human

perceptton, We expect that the sky in the segmented image
is identified as one component, the buildings in distance is

a component, and the water is a component. We do not

expect the whole piece of land close to the viewer to be

one component because the difference between various

parts is perceptually significant (e.g., the difference

between the green grass from other parts). Figure l b is the

segmented image produced by the method described in [4]

with parameter value 300. In Figure l b , the sky is still in

two parts, but the green grass on the land has been merged

with the surrounding parts. In order to make the sky one

component, we need to increase the parameter value.

Figure l is the segmented image using 400 as the

parameter value. However, to separate the green grass

from the other Part, we need to decrease the parameter
value.

Figure 1. Ground-water: a) The original input image; b) Segmented

image by the original method with =300; c) Segmented image by the

original method with k=400; d) Segmented image by our method.

Therefore, it is impossible to produce a satisfactory result
no matter what parameter value is chosen. The reason is

that the method described in [4] uses the maximum edge

weight to describe a component, each time a pixel is

merged with a component; the newly added edge weight is

used to describe the component. In this example, although

the difference between the green grass with surrounding

parts on the land is perceptually significant, the boundary

is not clear. There exist pixels that are between the typical

pixels of the two adjacent parts. These pixels work as a

transition and incorrectly merge the two perceptually

different components. Our average edge weight
description of component is more stable. Figure Id shows

the segmented image by our method. Here, the sky is one

component and the green grass is separated from the

surrounding parts on the land.

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 5, May 2016
ISSN : 2348 - 6090
www.IJCAT.org

306

6. Summary and Conclusion

In this paper, we compared the existing segmentation

approaches in terms of image features, similarity

measurement and segmentation algorithm and discussed
the possible techniques to improve the efficiency of image

segmentation for sensor monitoring applications. We

analyzed the graph-based image segmentation method

described in [4], which is reported in the literature as the

fastest one with satisfactory segmentation result we

proposed major improvement to this method.. We re-

defined the internal difference to give a more accurate and

stable description of components with no increase of time

complexity .We re-define the threshold function such that

it Can adaptively guide the segmentation process in-

dependent of the edge weight scale. Finally, the reported

experimental results on a well Learn known database of
images demonstrate the effective-ness and efficiency of

the proposed approach.

References

[1] Y.A.Deodhe, “wavelet based segmentation of remotely

sensed images using graph based method” International
conference on computer applications ICCA
2012.Pondicherry

[2] Z. Wu and R. Leahy, "Optimal graph theoretic
approach to data clustering: theory and its application
to image segmentation," IEEE Trans. PatternAnalysis
and Machine Intelligence, Vo1.15, No.11pp.1101-

1113, 1993
[3] J. Shi and J. Malik, "Normalized Cuts and Image

Segmentation," IEEE Trans. Pattern Analysis and
Machine Intelligence, Vo1.22, No.8, pp.888-905, 2000

[4] Y. Weiss, "Segmentation using eigenvector unifying
view," Proceedings of International Conference on
Computer Vision, pp.975-982, 1999.

[5] P.F. Felzenszwalb and D.P. Huttenlocher, "Efficient

Graph-Based Image Segmentation," Interna tional
Journal of Computer Vision, Vo.59, No.2, 2004.

[6] W. Hsu, M.L. Lee, and J. Zhang, "Image
Mining:Trends and Developments," Journal of
IntelligentInformation Systems, Vo1.19, No.1, pp.7-23,
2002.

[7] B. Kim, J. Shim and D. Park, "Fast Image
Segmentation based on Multi-resolution Analysis and

Wavelets," Pattern Recognition Letters, Vo1.24,N0.16,
pp.2995-3006, 2003.

[8] A.C. Gilbert, Y. Kotidis, S. Muthukrishnan and M.J.
Strauss, "One-Pass Wavelet Decomposition of Data
Streams," IEEE IPrans Knowledge and Data
Engineering, Vo1.15, No.3, 2003.

[9] B. Kim, J. Shim and D. Park, "Fast Image
Segmentation based on Multi-resolution Analysis and

Wavelets," Pattern Recognition Letters, Vo1.24,N0.16,
pp.2995-3006, 2003.

[10] J. Bruce, T. Balch and M. Veloso, "Fast and Cheap
Image Segmentation for interactive Robots,"
Proceedings of the Workshop on InteractiveRobotics
and Entertainment, 2000.

[11] H. Choi and R.G. Baraniuk, "Multi-scale Image
Segmentation Using Wavelet-Domain Hidden Markov

Models," IEEE Trans. Image Processing, VOl.lO1
No.9, 2001.

Bibliography

Prof. Yeshwant A.Deodhe ,Assist. Professor, Deptt. Of
Electronics,RGCER, Nagpur has competed B.E. Electronics in
1996 from Nagpur,university . M.Tech Electronics in 2011 from
Nagpur university. Five Research publications in IEEE
international conferences in India.and Three papers in
international journal in India in the Area of specialization is VLSI
and communication engineering and Image processing.

Prof.Shashant Jaykar Assist. Professor, Deptt. Of
Electronics,RGCER, Nagpur has competed B.E. Electronics in
2008 from Amarawati,university . M.Tech Electronics in 2011 from
Nagpur university. Six Research publications in IEEE international
conferences in India.in the Area of specialization is VLSI and
Signal processing.Ten papers in International journal in India.

