
IJCAT - International Journal of Computing and Technology, Volume 3, Issue 5, May 2016
ISSN : 2348 - 6090
www.IJCAT.org

314

An Efficient Approach for Load Balancing P2P

System

1 Najim Sheikh, 2 Dr. Sachin Choudhari

1 M.Tech RGPV

2 Principal, SBITM Betul

Abstract - Most P2P systems that provide a DHT

abstraction distribute objects randomly among “peer nodes”

in a way that results in some nodes having Θ(log N) times as

many objects as the average node. Further imbalance may

result due to non-uniform distribution of objects in the

identifier space and a high degree of heterogeneity in object

loads and node capacities. Additionally, a node’s load may

vary greatly over time since the system can be expected to

experience continuous insertions and deletions of objects,

skewed object arrival patterns, and continuous arrival and

departure of nodes. In this paper, we propose an algorithm

for load balancing in such heterogeneous, dynamic P2P

systems. Our simulation results show that in the face of rapid

arrivals and departures of objects of widely varying load, our

algorithm achieves load balancing for system utilizations as

high as 90% while moving only about 8% of the load that

arrives into the system. Similarly, in a dynamic system where

nodes arrive and depart, our algorithm moves less than 60%

of the load the underlying DHT moves due to node arrivals

and departures. Finally, we show that our distributed

algorithm performs only negligibly worse than a similar

centralized algorithm, and that node heterogeneity helps, not

hurts, the scalability of our algorithm.

Keywords – Load Balancing, P2P Systems.

1. Introduction

The last several years have seen the emergence of a class

of structured peer-to-peer systems that provide a

distributed hash table (DHT) abstraction ([1], [2], [3], [4]).

In such structured systems, a unique identifier is

associated with each data item and each node in the
system. The identifier space is partitioned among the

nodes that form the peer-to-peer (P2P) system, and each

node is responsible for storing all the items that are

mapped to an identifier in its portion of the space. Thus,

the system provides an interface consisting of two

functions: put(id, item), which stores an item, associating

with it a given identifier id; and get(id) which retrieves the

item with the identifier id. Consider a system with N

nodes. If node and item identifiers are randomly chosen as

assumed in [1], [2], [3], [4], there is a Θ(log N) imbalance

factor in the number of items stored at a node.

Furthermore, if applications associate semantics with the
item IDs, the imbalance factor can become arbitrarily bad

since IDs would no longer be uniformly distributed. For

example, a database application may wish to store all

tuples (data items) of a relation according to the primary

key using the tuple keys as IDs. This would allow the

application to efficiently implement range querying (i.e.,

finding all items with keys in a given interval) and sorting

operations, but would assign all the tuples to a small

region of the ID space. In addition, the fact that in typical

P2P systems, the capabilities of nodes (storage and

bandwidth) can differ by multiple orders of magnitude
further aggravates the problem of load imbalance.

Several solutions have been proposed to address the load

balancing problem [2], [5], [6]. However, these all assume

that the system is static and most assume that the IDs of

both nodes and items are uniformly distributed. In this

paper, we present a solution for a system in which these

assumptions do not hold. In particular, we consider a

system in which

• data items are continuously inserted and deleted,

• nodes join and depart the system continuously, and

• The distribution of data item IDs and item sizes can be

skewed.

Our algorithm uses the concept of virtual servers

previously proposed in [7]. A virtual server represents a

peer in the DHT; that is, the storage of data items and

routing happen at the virtual server level rather than at the

physical node level. A physical node hosts one or more

virtual servers. Load balancing is achieved by moving

virtual servers from heavily loaded physical nodes to

lightly loaded physical nodes.

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 5, May 2016
ISSN : 2348 - 6090
www.IJCAT.org

315

In this paper we make the following contributions:

1) We propose an algorithm which to the best of our

knowledge is the first to provide dynamic load

balancing in heterogeneous, structured P2P

systems.

2) We study the proposed algorithm by using

extensive simulations over a wide set of system

scenarios and algorithm parameters.

Our main results are as follows:

1) Our simulations show that in the face of object

arrivals and departures and system utilizations as
high as 90%, the algorithm achieves a good load

balance while moving only about 8% of the load

that arrives into the system. Furthermore, in a

dynamic system where nodes arrive and depart,

our algorithm moves less than 60% as much load

as the underlying DHT moves as a result of node

arrivals and departures.

2) Our algorithm produces a 99.9th percentile node

utilization less than 3% higher than a similar fully

centralized load balancer, showing that the price

of decentralization is negligible.

3) Heterogeneity of node capacity allows us to use

fewer virtual servers per node than in the equal-

capacity case, thus increasing the scalability of

the system.
4) The rest of the paper is organized as follows. In

Section II, we formulate the load balancing

problem more explicitly and discuss what

resources we may balance effectively. In Section

III, we discuss background material, including
our use of virtual

Servers and our previous load balancing schemes given in

[5]. In Section IV, we describe our algorithm for load

balancing in dynamic P2P systems, and we evaluate its

performance through simulation in Section V. We discuss

future directions in Section VI, related work in Section
VII, and conclude in Section VIII.

2. Problem Formulation and Motivation

2.1 Definitions and Goals

Each object (data item) that enters the system has an

associ-ated load, which might represent, for example, the

number of bits required to store the object, the popularity

of the object, or the amount of processor time needed to

serve the object. Thus, we do not assume a particular

resource, but we assume that there is only one bottleneck

resource in the system, leaving multi-resource balancing to

future work.

Each object also has a movement cost, which we are

charged each time we move the object between nodes. We

assume this cost is the same regardless of which two nodes

are involved in the transfer. One can think of this cost as

being proportional to the object’s storage size. An object’s

load may or may not be related to its movement cost.

The load _i of a node i at a particular time is the sum of

the loads of the objects stored on that node at that time.

Each node i has a fixed capacity ci > 0, which might

represent, for example, available disk space, processor

speed, or bandwidth. A node’s utilization ui is the fraction

of its capacity that is used: ui = _i /ci . The system

utilization µ is the fraction of the system’s total capacity

which is used:

µ = nodes n
_

n
.

When un > 1, we say that node n is overloaded; otherwise
node i is said to be under loaded. We use light and heavy
to informally refer to nodes of low or high utilization,
respectively.

A load balancing algorithm should strive to achieve the

following (often conflicting) goals:

• Minimize the load imbalance. To provide the best

quality of service, every node would have the same

utilization. Furthermore, for resources with a well-

defined cliff in the load-response curve, it is of

primary importance that no node’s load is above the

load at which the cliff occurs. We can take this point

to be the capacity of the node.
• Minimize the amount of load moved. Moving a

large amount of load uses bandwidth and may be

infeasible if a node’s load changes quickly in relation

to the time needed to move objects.

We formalize these goals in Section V.

2.2 Relevance of Load Balancing

In this subsection, we answer two natural questions with

respect to the relevance of load balancing in the context of

two particular resources: storage and bandwidth.

Is load balancing of storage feasible? This question is

raised by the huge disparity between the storage capacity

of the end-hosts and the access bandwidth in a wide area

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 5, May 2016
ISSN : 2348 - 6090
www.IJCAT.org

316

network. Even if the end-hosts have broadband

connectivity (cable modem or DSL), it may take more than

one hour to transfer 1 GB of data, which is not a large

amount of data considering the fact that notebooks today

come with 20-30 GB disks.1 Thus in many situations the

amount of data movement necessary to significantly
improve the load balance might not be achievable quickly

enough. In spite of this fact, we believe that it is feasible to

balance storage in other contexts in which DHTs are

useful, such as in data centers with thousands or tens of

thousands of machines connected by very high speed

network connections (e.g., > 1 Gbps).

Why use load balancing for bandwidth? For the

purposes of relieving hot-spots, an alternative to load

balancing is replication (caching). Why not replicate a

popular data item instead of shifting sole responsibility for

the popular item to a more powerful node? Replication,

though a good solution in the case of immutable data,

would require complex algorithms to maintain data

consistency in the case of mutable data. Fur-thermoses,

many peer-to-peer systems are highly heterogeneous. The

uplink capacity of a home user and the uplink capacity of a

host on a university network can differ by as much as two
orders of magnitude. Thus, moving a data item to a well-

connected machine would be equivalent to generating and

maintaining as many as 100 replicas of that data item,

which may add significant overhead. Finally, we note that

replication and load balancing are orthogonal and one can

combine them to improve system performance.

3. Background

In this section, we argue for our design decision to use

virtual servers as a fundamental unit of load balancing, and

describe our earlier load balancing schemes on which the

algorithm of this paper is based.

3.1 Use of Virtual Servers

One of the difficulties of load balancing in DHTs is that
the load balancer has little control over where the objects

are stored. Most DHTs use consistent hashing to map

objects onto nodes [8]: both objects and nodes in the

system are assigned unique IDs in the same identifier

space, and an object is stored at the node with the “closest”

ID in the space. This associates with each node a region of

the ID space for which it is responsible. More generally, if

we allow the use of virtual servers, a node may have

multiple IDs and therefore owns a set of noncontiguous

regions.

Under the assumption that we preserve the use of

consistent hashing, the load balancer is restricted to

moving load by either remapping objects to different

points in the ID space, i.e.,

This is actually an underestimate. One hour corresponds to

a bottleneck bandwidth of 1.2 Mbps which is much higher

than the uplink bandwidth of DSL and cable modem

connections. However, since items are queried by their
IDs, changing the ID of an object would make it difficult

to locate that object subsequently. Furthermore, some

applications compute the ID of an object by hashing its

content [7], thus rendering its ID static.

Thus we must change the set of regions associated with a

node. Since we wish to avoid large load movement, we

need to be able to remove a small fraction of the ID space

associated with a node. The design space here is not small

and we do not claim that our choice is the only reasonable

one. However, our choice is a simple one: we reassign an

entire region from one node to another, but ensure that the
number of regions (virtual servers) per node is large

enough that a single region is likely to represent only a

small fraction of a node’s load.

One drawback of this approach is that if there are an

average of m virtual servers per node, the per-node routing

state increases by a factor of m since a node must maintain

the links associated with each of its virtual servers (but in

Chord, lookup path length does not increase3). However,

as we will see in Section V-D, we need a relatively modest

number of virtual servers per node (e.g., m = log N) to
achieve good load balancing and substantially fewer when

node capacities are heterogeneous. We believe this

overhead is acceptable in practice.

One of the main advantages of using virtual servers for

balancing the load is that this approach does not require

any changes to the underlying DHT. Indeed, the transfer of

a virtual server can be implemented simply as a peer

leaving and another peer joining the system. The ID-to-

peer (i.e., ID-to-virtual server) and ID-to-object mappings

that the underlying DHT performs are unaffected. If a

node leaves the system, its share of identifier space is
taken over by other nodes which are present in the system

just as the underlying DHT would do. In the case of Chord

[7], each virtual server v of a node that leaves the system

would be taken over by a node that is responsible for a

virtual server v
_ which immediately succeeds v in the

identifier space. Similarly, when a node joins, it picks m

random points in the ID space and splits the virtual servers

there, thereby acquiring m virtual servers.

We assume that there are external methods to make sure

that node departures do not cause loss of data objects. In
particular, we assume that there is replication of data

objects as proposed

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 5, May 2016
ISSN : 2348 - 6090
www.IJCAT.org

317

2Another approach would be to use indirection: if a large
object is hashed onto a heavy node then store only a pointer at
the heavy node, and store the object at a light node. However,
this approach does not remap responsibility for the object pointer
and so would not help when objects are small (e.g., tuples in a

database relation). Furthermore, indirection adds complexity and
is orthogonal to our solution.

3We can compensate for the fact that there are now mN peers
by using shortcut routing as proposed in [7]: a virtual server may
use the outlinks of any of its physical node’s virtual servers. To
see why this offsets the factor m increase in the number of peers,
note that we expect N virtual servers to lie between each of the m

virtual servers belonging to a particular node.

in CFS [7], and departure of a node would result in the

load being transferred to the neighbors in the identifier

space.

3.2 Static Load Balancing Techniques

In a previous paper, we introduced three simple load

balancing schemes that use the concept of virtual servers

for static systems [5]. Since the algorithm presented in this

paper is a natural extension of those schemes, we briefly

review them here. The schemes differ primarily in the

number and type of nodes involved in the decision process

of load balancing.

In the simplest scheme, called one-to-one, each lightly

loaded node v periodically contacts a random node w. If w

is heavily loaded, virtual servers are transferred from w to

v such that w becomes light without making v heavy.

The second scheme, called one-to-many, allows a heavy

node to consider more than one light node at a time. A

heavy node h examines the loads of a set of light nodes by

contacting a random directory node to which a random set

of light nodes have sent their load information. Some of

h’s virtual servers are then moved to one or more of the

lighter nodes registered in the directory.

Finally, in the many-to-many scheme each directory main-

tains load information for a set of both light and heavy

nodes. An algorithm run by each directory decides the

reassignment of virtual servers from heavy nodes

registered in that directory to light nodes registered in that

directory. This knowledge of nodes’ loads, which is more

centralized than in the first two schemes, can be expected

to provide a better load balance. Indeed, our results

showed that the many-to-many technique performs the

best.

Our new algorithm presented in the next section combines

elements of the many-to-many scheme (for periodic load

bal-acing of all nodes) and of the one-to-many scheme (for

emer-gency load balancing of one particularly overloaded

node).

4. Load Balancing Algorithm

The basic idea of our load balancing algorithm is to store

load information of the peer nodes in a number of

directories which periodically schedule reassignments of

virtual servers to achieve better balance. Thus we
essentially reduce the distributed load balancing problem

to a centralized problem at each directory.

Each directory has an ID known to all nodes and is stored

at the node responsible for that ID. Each node n initially

chooses a random directory and uses the DHT lookup

protocol to report to the directory (1) the loads _v1 , . . . ,

_vm of the virtual servers for which n is responsible and (2)

n’s capacity cn. Each directory collects load and capacity

information from nodes which contact it. Every T seconds,

it computes a schedule of virtual server transfers among

those nodes with the goal of reducing their maximum
utilization to a parameterized periodic threshold kp . After

completing a set of transfers scheduled by a directory, a

node chooses a new random directory and the process

repeats.

When a node n’s utilization un = _n /cn jumps above a

parameterized emergency threshold ke , it immediately

reports to the directory d which it last contacted, without

waiting for d’s next periodic balance. The directory then

schedules immediate transfers from n to more lightly

loaded nodes.

More precisely, each node n runs the following algorithm.

Node(time period T , threshold ke)
• Initialization: Send (cn , {_v1 , . . . , _vm }) to

Ran-domDirectory()

• Emergency action: When un jumps above ke:

1) Repeat up to twice while un > ke :
2) d ← RandomDirectory()
3) Send (cn , {_v1 , . . ., _vm }) to d

4) PerformTransfer(v, n
_
) for each

transfer v → n
_
 scheduled by d

• Periodic action: Upon receipt of list of transfers
from a directory:

1) PerformTransfer(v, n
_
) for each transfer

v → n
_

2) Report (cn , {_v1 , . . ., _vm }) to

RandomDirec-tory()

In the above pseudocode, RandomDirectory()

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 5, May 2016
ISSN : 2348 - 6090
www.IJCAT.org

318

selects two random directories and returns the one to

which fewer nodes have reported since its last periodic

balance. This reduces the imbalance in number of nodes

reporting to directories. PerformTransfer(v, n
_
)

transfers virtual server v to node n
_
 if it would not

overload n
_
, i.e. if _n + _v ≤ cn . Thus a transfer may be

aborted if the directory scheduled a transfer based on

outdated information (see below).

Each directory runs the following algorithm.

The subroutine ReassignVS, given a threshold k and the

load information I reported to a directory, computes a

reassignment of virtual servers from nodes with utilization

greater than k to those with utilization less than k. Since
computing an optimal such reassignment.

Algorithm runs in O(m log m) time, where m is the number

of virtual servers that have reported to the directory.

ReassignVS(Load & capacity information I, threshold

k)

1) pool ← {}
2) For each node n ∈ I, while _n /cn > k, remove

the least loaded virtual server on n and move it to
pool.

3) For each virtual server v ∈ pool, from heaviest to
lightest, assign v to the node n which minimizes
(_n + _v)/cn .

4) Return the virtual server reassignment.

We briefly discuss several important design issues.

Periodic vs. emergency balancing. We prefer to schedule

transfers in large periodic batches since this gives Reas-

signVS more flexibility, thus producing a better

balance. However, we do not have the luxury to wait

when a node is (about to be) overloaded. In these

situations, we resort to emergency load balancing. See

Section V-A for a further discussion of these issues.

Choice of parameters. We set the emergency balancing

threshold ke to 1 so that load will be moved off a node

when load increases above its capacity. We compute the

periodic threshold kp dynamically based on the average

utilization µˆ of the nodes reporting to a directory, setting

kp = (1+ µˆ)/2. Thus directories do not all use the same

value of kp . As the names of the parameters suggest, we

use the same time period T be-tween nodes’ load
information reports and directories’ periodic balances.

These parameters control the tradeoff between low load

movement and low quality of balance: intuitively, smaller

values of T , kp , and ke provide a better balance at the

expense of greater load movement.

Stale information. We do not attempt to synchronize the

times at which nodes report to directories with the times at

which directories perform periodic balancing. Indeed, in

our simulations, these times are all randomly aligned.

Thus, directories do not perform periodic balances at the

same time, and the information a directory uses to decide

virtual server reassignment may be up to T seconds old.

5. Evaluation

We use extensive simulations to evaluate our load

balancing algorithm. We show.

• the basic effect of our algorithm, and the necessity of

emergency action (Section V-A);

• the tradeoff between low load movement and a good

balance, for various system and algorithm parameters

(Section V-B);

• the number of virtual servers necessary at various

system utilizations (Section V-C);

• the effect of node capacity heterogeneity, concluding

that we can use many fewer virtual servers in a

heterogeneous system (Section V-D);

• the effect of no uniform object arrival patterns,

showing that our algorithm is robust in this case

(Section V-E);

Directory(time period T , thresholds ke , kp)
• Initialization: I ← {}

• Information receipt and emergency balancing:

Upon receipt of J = (cn , {_v1 , . . . , _vm })

from node n:

1) I ← I ∪ J
2) If un > ke :

3) reassignment ← ReassignVS(I, ke)
4) Schedule transfers according to

reassignment
• Periodic balancing: Every T seconds:

1) reassignment ← ReassignVS(I, kp)
2) Schedule transfers according to

reassignment
3) I ← {}

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 5, May 2016
ISSN : 2348 - 6090
www.IJCAT.org

319

the effect of node arrival and departure, concluding that

our load balancer never moves more than 60% as much

load as the underlying DHT moves due to node arrivals

and departures (Section V-F); and

• the effect of object movement cost being unrelated to
object load, with the conclusion that this variation has

little effect on our algorithm (Section V-G).

Metrics. We evaluate our algorithm using two primary

metrics:

1) Load movement factor, defined as the total

movement cost incurred due to load balancing

divided by the total cost of moving all objects in the

system once. Note that since

the DHT must move each object once to initially
insert it, a load movement factor of 0.1 implies that

the balancer consumes 10% as much bandwidth as is

required to insert the objects in the first place.

2) 99.9th percentile node utilization, defined as the

maxi-mum over all simulated times t of the 99.9th

percentile of the utilizations of the nodes at time t.

Recall from Section II that the utilization of node i is

its load divided by its capacity: ui = _i /ci .

The challenge is to achieve the best possible tradeoffs
between these two conflicting metrics.

Simulation methodology. Table I lists the parameters of

our event-based simulated environment and of our

algorithm, and the values to which we set them unless

otherwise specified.

We run each trial of the simulation for 20T simulated

seconds, where T is the parameterized load balance period.

To allow the system to stabilize, we measure 99.9th

percentile node utilization and load movement factor only

over the time period [10T, 20T]. In particular, in
calculating the latter metric, we do not count the

movement cost of objects that enter the system, or objects

that the load balancer moves, before time 10T . Finally,

each data point in our plots represents the average of these

two measurements over 5 trials.

A. Basic effect of load balancing

Figure 1 captures the tradeoff between load movement and

99.9th percentile node utilization. Each point on the

lower line corresponds to the effects of our algorithm with

a particular choice of load balance period T . For this and

in subsequent plots wherein we vary T , we use T ∈

{60, 120, 180, 240, 300, 600, 1200}. The intuitive trend is

that as T decreases (moving from left to right along the

line), 99.9th percentile node utilization decreases but load

movement factor increases. One has the flexibility of

choosing T to compromise between these two metrics in

the way which is most appropriate for the target
application.

The upper line of Figure 1 shows the effect of our

algorithm with emergency load balancing turned off.

Without emergency balancing, for almost all nodes’ loads

to stay below some

threshold, we must use a very small load balancing period

T so that it is unlikely that a node’s load rises significantly

between periodic balances. This causes the algorithm to

move significantly more load, and demonstrates the

desirability of

 1.35

Periodic

1.3 Periodic + Emergency

U
til

iz
a

tio
n

1.25

1.2

N
o

d
e

1.15

P
e

rc
e

n
til

e

1.1

9
9

.9
th

1.05

 1

 0.95

 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

Load Movement Factor

Fig. 1. 99.9th percentile node utilization vs. load moved, for our
periodic+emergency algorithm and for only periodic action.

Emergency load balancing. In the simulations of the rest of

this paper, emergency balancing is enabled as in the

description of our algorithm in Section IV.

B. Load movement vs. 99.9th percentile node utilization

With a basic understanding of the tradeoff between our

two metrics demonstrated in the previous section, we now

explore the effect of various environment and system

parameters on this tradeoff.

In Figure 2, each line corresponds to particular system

utilization, and as in Figure 1, each point represents a

particular choice of T between 60 and 1200 seconds. Even

for system utilizations as high as 0.9, we are able to keep

99.9 percent of the nodes under loaded while incurring a

load movement factor of less than 0.08.
Figure 3 shows that the tradeoff between our two metrics

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 5, May 2016
ISSN : 2348 - 6090
www.IJCAT.org

320

gets worse when the system contains fewer objects of

com-mensurately higher load, so that the total system

utilization is constant. Nevertheless, for at least 250, 000

objects, which corresponds to just 61 objects per node, we

achieve good load balance with a load movement factor of

less than 0.11.4 Note that for 100, 000 objects, the 99.9th

percentile node utilization extends beyond the range of the

plot, to less than 2.6. However, only a few nodes are

overloaded: the 99.5th percentile node utilization for 100,

000 objects (not shown) stays below 1.0 with a load

movement factor of 0.22. In any case, we believe that our

default choice of 1 million objects is reasonable.

Figure 4 shows that the number of directories in the

system has only a small effect on our metrics. For a

particular load movement factor, our default choice of 16

directories produces a 99.9th percentile node utilization

less than 3% higher than in the fully centralized case of 1

directory.

C. Number of virtual servers

Figures 5 and 6 plot our two metrics as functions of

system utilization. Each line corresponds to a different

average (over

4The spike above utilization 1 in the 500, 000-object line
is due to a single outlier among our 5 trials.

slowed significantly. For homogeneous nodes and objects

and

a static system, picking d = 2 achieves a load balance

within a log log N factor of optimal, and when d = Θ(log N

) the

load balance is within a constant factor of optimal.

However, this scheme was not analyzed or simulated for

the case of heterogeneous object sizes and node capacities,

and in any case is not prepared to handle a dynamic

system of the kind which we have described. This is

largely complementary to the work presented in this paper.

Adler et al [9] present a DHT which provably ensures that,

as nodes join the system, the ratio of loads of any two

nodes is O(1) with high probability. The system is

organized as a tree, with additional links for routing in a

hypercube topology. A joining node considers a small set

of leaf nodes of the tree and joins the system by splitting

an appropriately chosen leaf. However, no analysis of

node departure was given and the system does not deal

with varying node capacity or object distribution.

Karger and Ruhl [10] propose algorithms which

dynamically balance load among peers without using

multiple virtual servers by reassigning lightly loaded

nodes to be neighbors of heavily loaded nodes. However,

they do not fully handle the case of heterogeneous node

capacities, and while they prove bounds on maximum

node utilization and load movement, it is unclear whether
their techniques would be efficient in practice.

Douceur and Wattenhofer [11] have proposed algorithms

for replica placement in a distributed file system which are

similar in spirit with our algorithms. However, their

primary goal is to place object replicas to maximize the

availability in an untreated P2P system, while we consider
the load balancing problem in a cooperative system.

Triantafillou et al. [12] have recently studied the problem

of load balancing in the context of content and resource

management in P2P systems. However, their work

considers an unstructured P2P system, in which meta-data

is aggregated over a two-level hierarchy.

There is a large body of theoretical work in load balancing

problems similar to ours in that they seek to minimize both

maximum load and amount of load moved. This includes

Aggarwal et al [13] in an offline setting similar to that of

our periodic load balancer, and Westbrook [14], Andrews

et al [15], and others (see Azar’s survey [16]) in an online

setting. It would be interesting to study whether these

algorithms can be adapted to our system.

90% while transferring only about 8% of the load that

arrives in the system, and performs only slightly less
effectively than a similar but fully centralized balancer. In

addition, we found that heterogeneity of the system can

improve scalability by reducing the necessary number of

virtual servers per node as compared to a system in which

all nodes have the same capacity.

References

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.

Shenker, “A Scalable Content-Addressable Network,” in

Proc. ACM SIGCOMM, San Diego, 2001.
[2] Ion Stoica, Robert Morris, David Karger, M. Frans

Kaashoek, and Hari Balakrishnan, “Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications,”
in Proc. ACM SIGCOMM, San Diego, 2001, pp. 149–
160.

[3] Kris Hildrum, John D. Kubatowicz, Satish Rao, and Ben
Y. Zhao, “Distributed Object Location in a Dynamic

Network,” in Proc. ACM SPAA, Aug. 2002.
[4] Antony Rowstron and Peter Druschel, “Pastry: Scalable,

Dis-tributed Object Location and Routing for Large-scale
Peer-to-Peer Systems,” in Proc. Middleware, 2001.

[5] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana,
Richard Karp, and Ion Stoica, “Load Balancing in
Structured P2P Systems,” in Proc. IPTPS, Feb. 2003.

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 5, May 2016
ISSN : 2348 - 6090
www.IJCAT.org

321

[6] John Byers, Jeffrey Considine, and Michael
Mitzenmacher, “Simple Load Balancing for Distributed
Hash Tables,” in Proc. IPTPS, Feb. 2003.

[7] Frank Dabek, Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica, “Wide-area Cooperative Storage

with CFS,” in Proc. ACM SOSP, Banff, Canada, 2001.
[8] David Karger, Eric Lehman, Tom Leighton, Matthew

Levine, Daniel Lewin, and Rina Panigrahy, “Consistent

Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide
Web,” in Proc. ACM STOC, May 1997.

[9] M. Adler, Eran Halperin, R. M. Karp, and V. Vazirani,
“A stochastic process on the hypercube with applications

to peer-to-peer networks,” in Proc. STOC, 2003.

