
IJCAT - International Journal of Computing and Technology, Volume 3, Issue 5, May 2016        
ISSN : 2348 - 6090 
www.IJCAT.org 

 

314 

An Efficient Approach for Load Balancing P2P 

System 
 

1 Najim Sheikh, 2 Dr. Sachin Choudhari 

 
1 M.Tech RGPV 

 
2 Principal, SBITM Betul 

 

 

 

 

 

Abstract - Most P2P systems that provide a DHT 

abstraction distribute objects randomly among “peer nodes” 

in a way that results in some nodes having Θ(log N ) times as 

many objects as the average node. Further imbalance may 

result due to non-uniform distribution of objects in the 

identifier space and a high degree of heterogeneity in object 

loads and node capacities. Additionally, a node’s load may 

vary greatly over time since the system can be expected to 

experience continuous insertions and deletions of objects, 

skewed object arrival patterns, and continuous arrival and 

departure of nodes. In this paper, we propose an algorithm 

for load balancing in such heterogeneous, dynamic P2P 

systems. Our simulation results show that in the face of rapid 

arrivals and departures of objects of widely varying load, our 

algorithm achieves load balancing for system utilizations as 

high as 90% while moving only about 8% of the load that 

arrives into the system. Similarly, in a dynamic system where 

nodes arrive and depart, our algorithm moves less than 60% 

of the load the underlying DHT moves due to node arrivals 

and departures. Finally, we show that our distributed 

algorithm performs only negligibly worse than a similar 

centralized algorithm, and that node heterogeneity helps, not 

hurts, the scalability of our algorithm. 

 
Keywords – Load Balancing, P2P Systems. 
 

1. Introduction 
 

The last several years have seen the emergence of a class 

of structured peer-to-peer systems that provide a 

distributed hash table (DHT) abstraction ([1], [2], [3], [4]). 

In such structured systems, a unique identifier is 

associated with each data item and each node in the 
system. The identifier space is partitioned among the 

nodes that form the peer-to-peer (P2P) system, and each 

node is responsible for storing all the items that are 

mapped to an identifier in its portion of the space. Thus, 

the system provides an interface consisting of two 

functions: put(id, item), which stores an item, associating 

with it a given identifier id; and get(id) which retrieves the 

item with the identifier id. Consider a system with N 

nodes. If node and item identifiers are randomly chosen as 

assumed in [1], [2], [3], [4], there is a Θ(log N ) imbalance 

factor in the number of items stored at a node. 

Furthermore, if applications associate semantics with the 
item IDs, the imbalance factor can become arbitrarily bad 

since IDs would no longer be uniformly distributed. For 

example, a database application may wish to store all 

tuples (data items) of a relation according to the primary 

key using the tuple keys as IDs. This would allow the 

application to efficiently implement range querying (i.e., 

finding all items with keys in a given interval) and sorting 

operations, but would assign all the tuples to a small 

region of the ID space. In addition, the fact that in typical 

P2P systems, the capabilities of nodes (storage and 

bandwidth) can differ by multiple orders of magnitude 
further aggravates the problem of load imbalance.  

 

Several solutions have been proposed to address the load 

balancing problem [2], [5], [6]. However, these all assume 

that the system is static and most assume that the IDs of 

both nodes and items are uniformly distributed. In this 

paper, we present a solution for a system in which these 

assumptions do not hold. In particular, we consider a 

system in which 

 

• data items are continuously inserted and deleted,  
 

• nodes join and depart the system continuously, and  
 

• The distribution of data item IDs and item sizes can be 

skewed.  

 

Our algorithm uses the concept of virtual servers 

previously proposed in [7]. A virtual server represents a 

peer in the DHT; that is, the storage of data items and 

routing happen at the virtual server level rather than at the 

physical node level. A physical node hosts one or more 

virtual servers. Load balancing is achieved by moving 

virtual servers from heavily loaded physical nodes to 

lightly loaded physical nodes. 
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In this paper we make the following contributions: 
 

1) We propose an algorithm which to the best of our 

knowledge is the first to provide dynamic load 

balancing in heterogeneous, structured P2P 

systems.  

 

2) We study the proposed algorithm by using 

extensive simulations over a wide set of system 

scenarios and algorithm parameters.  

 
Our main results are as follows: 
 

1) Our simulations show that in the face of object 

arrivals and departures and system utilizations as 
high as 90%, the algorithm achieves a good load 

balance while moving only about 8% of the load 

that arrives into the system. Furthermore, in a 

dynamic system where nodes arrive and depart, 

our algorithm moves less than 60% as much load 

as the underlying DHT moves as a result of node 

arrivals and departures.  

2) Our algorithm produces a 99.9th percentile node 

utilization less than 3% higher than a similar fully 

centralized load balancer, showing that the price 

of decentralization is negligible.  

3) Heterogeneity of node capacity allows us to use 

fewer virtual servers per node than in the equal-

capacity case, thus increasing the scalability of 

the system.  
4) The rest of the paper is organized as follows. In 

Section II, we formulate the load balancing 

problem more explicitly and discuss what 

resources we may balance effectively. In Section 

III, we discuss background material, including 
our use of virtual 

 
Servers and our previous load balancing schemes given in 

[5]. In Section IV, we describe our algorithm for load 

balancing in dynamic P2P systems, and we evaluate its 

performance through simulation in Section V. We discuss 

future directions in Section VI, related work in Section 
VII, and conclude in Section VIII. 

 

2. Problem Formulation and Motivation  
 

2.1 Definitions and Goals  
 

Each object (data item) that enters the system has an 

associ-ated load, which might represent, for example, the 

number of bits required to store the object, the popularity 

of the object, or the amount of processor time needed to 

serve the object. Thus, we do not assume a particular 

resource, but we assume that there is only one bottleneck 

resource in the system, leaving multi-resource balancing to 

future work. 
 
Each object also has a movement cost, which we are 

charged each time we move the object between nodes. We 

assume this cost is the same regardless of which two nodes 

are involved in the transfer. One can think of this cost as 

being proportional to the object’s storage size. An object’s 

load may or may not be related to its movement cost. 
 

The load _i of a node i at a particular time is the sum of 

the loads of the objects stored on that node at that time. 

Each node i has a fixed capacity ci > 0, which might 

represent, for example, available disk space, processor 

speed, or bandwidth. A node’s utilization ui is the fraction 

of its capacity that is used: ui = _i /ci . The system 

utilization µ is the fraction of the system’s total capacity 

which is used: 

µ = nodes n 
_

n 
.  

  
 

 
When un > 1, we say that node n is overloaded; otherwise 
node i is said to be under loaded. We use light and heavy 
to informally refer to nodes of low or high utilization, 
respectively. 
 

A load balancing algorithm should strive to achieve the 

following (often conflicting) goals: 

  
• Minimize the load imbalance. To provide the best 

quality of service, every node would have the same 

utilization. Furthermore, for resources with a well-

defined cliff in the load-response curve, it is of 

primary importance that no node’s load is above the 

load at which the cliff occurs. We can take this point 

to be the capacity of the node.   
• Minimize the amount of load moved. Moving a 

large amount of load uses bandwidth and may be 

infeasible if a node’s load changes quickly in relation 

to the time needed to move objects.  

 
We formalize these goals in Section V. 

 

2.2 Relevance of Load Balancing 
 

In this subsection, we answer two natural questions with 

respect to the relevance of load balancing in the context of 

two particular resources: storage and bandwidth. 

 
Is load balancing of storage feasible? This question is 

raised by the huge disparity between the storage capacity 

of the end-hosts and the access bandwidth in a wide area 
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network. Even if the end-hosts have broadband 

connectivity (cable modem or DSL), it may take more than 

one hour to transfer 1 GB of data, which is not a large 

amount of data considering the fact that notebooks today 

come with 20-30 GB disks.1 Thus in many situations the 

amount of data movement necessary to significantly 
improve the load balance might not be achievable quickly 

enough. In spite of this fact, we believe that it is feasible to 

balance storage in other contexts in which DHTs are 

useful, such as in data centers with thousands or tens of 

thousands of machines connected by very high speed 

network connections (e.g., > 1 Gbps). 

 
Why use load balancing for bandwidth? For the 

purposes of relieving hot-spots, an alternative to load 

balancing is replication (caching). Why not replicate a 

popular data item instead of shifting sole responsibility for 

the popular item to a more powerful node? Replication, 

though a good solution in the case of immutable data, 

would require complex algorithms to maintain data 

consistency in the case of mutable data. Fur-thermoses, 

many peer-to-peer systems are highly heterogeneous. The 

uplink capacity of a home user and the uplink capacity of a 

host on a university network can differ by as much as two 
orders of magnitude. Thus, moving a data item to a well-

connected machine would be equivalent to generating and 

maintaining as many as 100 replicas of that data item, 

which may add significant overhead. Finally, we note that 

replication and load balancing are orthogonal and one can 

combine them to improve system performance. 

 

3.  Background 
 
In this section, we argue for our design decision to use 

virtual servers as a fundamental unit of load balancing, and 

describe our earlier load balancing schemes on which the 

algorithm of this paper is based. 

 

3.1 Use of Virtual Servers 

 

One of the difficulties of load balancing in DHTs is that 
the load balancer has little control over where the objects 

are stored. Most DHTs use consistent hashing to map 

objects onto nodes [8]: both objects and nodes in the 

system are assigned unique IDs in the same identifier 

space, and an object is stored at the node with the “closest” 

ID in the space. This associates with each node a region of 

the ID space for which it is responsible. More generally, if 

we allow the use of virtual servers, a node may have 

multiple IDs and therefore owns a set of noncontiguous 

regions. 

 
Under the assumption that we preserve the use of 

consistent hashing, the load balancer is restricted to 

moving load by either remapping objects to different 

points in the ID space, i.e.,  

 

This is actually an underestimate. One hour corresponds to 

a bottleneck bandwidth of 1.2 Mbps which is much higher 

than the uplink bandwidth of DSL and cable modem 

connections. However, since items are queried by their 
IDs, changing the ID of an object would make it difficult 

to locate that object subsequently. Furthermore, some 

applications compute the ID of an object by hashing its 

content [7], thus rendering its ID static. 

 

Thus we must change the set of regions associated with a 

node. Since we wish to avoid large load movement, we 

need to be able to remove a small fraction of the ID space 

associated with a node. The design space here is not small 

and we do not claim that our choice is the only reasonable 

one. However, our choice is a simple one: we reassign an 

entire region from one node to another, but ensure that the 
number of regions (virtual servers) per node is large 

enough that a single region is likely to represent only a 

small fraction of a node’s load. 

 

One drawback of this approach is that if there are an 

average of m virtual servers per node, the per-node routing 

state increases by a factor of m since a node must maintain 

the links associated with each of its virtual servers (but in 

Chord, lookup path length does not increase3). However, 

as we will see in Section V-D, we need a relatively modest 

number of virtual servers per node (e.g., m = log N ) to 
achieve good load balancing and substantially fewer when 

node capacities are heterogeneous. We believe this 

overhead is acceptable in practice. 

 

One of the main advantages of using virtual servers for 

balancing the load is that this approach does not require 

any changes to the underlying DHT. Indeed, the transfer of 

a virtual server can be implemented simply as a peer 

leaving and another peer joining the system. The ID-to-

peer (i.e., ID-to-virtual server) and ID-to-object mappings 

that the underlying DHT performs are unaffected. If a 

node leaves the system, its share of identifier space is 
taken over by other nodes which are present in the system 

just as the underlying DHT would do. In the case of Chord 

[7], each virtual server v of a node that leaves the system 

would be taken over by a node that is responsible for a 

virtual server v
_ which immediately succeeds v in the 

identifier space. Similarly, when a node joins, it picks m 

random points in the ID space and splits the virtual servers 

there, thereby acquiring m virtual servers. 

 

We assume that there are external methods to make sure 

that node departures do not cause loss of data objects. In 
particular, we assume that there is replication of data 

objects as proposed 
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2Another approach would be to use indirection: if a large 
object is hashed onto a heavy node then store only a pointer at 
the heavy node, and store the object at a light node. However, 
this approach does not remap responsibility for the object pointer 
and so would not help when objects are small (e.g., tuples in a 

database relation). Furthermore, indirection adds complexity and 
is orthogonal to our solution. 
 

3We can compensate for the fact that there are now mN peers 
by using shortcut routing as proposed in [7]: a virtual server may 
use the outlinks of any of its physical node’s virtual servers. To 
see why this offsets the factor m increase in the number of peers, 
note that we expect N virtual servers to lie between each of the m 

virtual servers belonging to a particular node. 

 
in CFS [7], and departure of a node would result in the 

load being transferred to the neighbors in the identifier 

space. 
 
3.2 Static Load Balancing Techniques 
 
In a previous paper, we introduced three simple load 

balancing schemes that use the concept of virtual servers 

for static systems [5]. Since the algorithm presented in this 

paper is a natural extension of those schemes, we briefly 

review them here. The schemes differ primarily in the 

number and type of nodes involved in the decision process 

of load balancing.  
 

In the simplest scheme, called one-to-one, each lightly 

loaded node v periodically contacts a random node w. If w 

is heavily loaded, virtual servers are transferred from w to 

v such that w becomes light without making v heavy.  
 

The second scheme, called one-to-many, allows a heavy 

node to consider more than one light node at a time. A 

heavy node h examines the loads of a set of light nodes by 

contacting a random directory node to which a random set 

of light nodes have sent their load information. Some of 

h’s virtual servers are then moved to one or more of the 

lighter nodes registered in the directory. 
 
Finally, in the many-to-many scheme each directory main-

tains load information for a set of both light and heavy 

nodes. An algorithm run by each directory decides the 

reassignment of virtual servers from heavy nodes 

registered in that directory to light nodes registered in that 

directory. This knowledge of nodes’ loads, which is more 

centralized than in the first two schemes, can be expected 

to provide a better load balance. Indeed, our results 

showed that the many-to-many technique performs the 

best. 
 

Our new algorithm presented in the next section combines 

elements of the many-to-many scheme (for periodic load 

bal-acing of all nodes) and of the one-to-many scheme (for 

emer-gency load balancing of one particularly overloaded 

node). 

 

4.  Load Balancing Algorithm 
 

The basic idea of our load balancing algorithm is to store 

load information of the peer nodes in a number of 

directories which periodically schedule reassignments of 

virtual servers to achieve better balance. Thus we 
essentially reduce the distributed load balancing problem 

to a centralized problem at each directory. 

 

Each directory has an ID known to all nodes and is stored 

at the node responsible for that ID. Each node n initially 

chooses a random directory and uses the DHT lookup 

protocol to report to the directory (1) the loads _v1 , . . . , 

_vm of the virtual servers for which n is responsible and (2) 

n’s capacity cn. Each directory collects load and capacity 

information from nodes which contact it. Every T seconds, 

it computes a schedule of virtual server transfers among 

those nodes with the goal of reducing their maximum 
utilization to a parameterized periodic threshold kp . After 

completing a set of transfers scheduled by a directory, a 

node chooses a new random directory and the process 

repeats. 

 

When a node n’s utilization un = _n /cn jumps above a 

parameterized emergency threshold ke , it immediately 

reports to the directory d which it last contacted, without 

waiting for d’s next periodic balance. The directory then 

schedules immediate transfers from n to more lightly 

loaded nodes. 
 

More precisely, each node n runs the following algorithm. 

 

Node(time period T , threshold ke) 
• Initialization: Send (cn , {_v1 , . . . , _vm }) to 

Ran-domDirectory()  

• Emergency action: When un  jumps above ke:  
 

1) Repeat up to twice while un  > ke :   
2) d ← RandomDirectory()   
3) Send (cn , {_v1 , . . ., _vm }) to d  

4) PerformTransfer(v, n
_
) for each 

transfer v → n
_
 scheduled by d   

• Periodic action: Upon receipt of list of transfers 
from a directory:   

1) PerformTransfer(v, n
_
) for each transfer 

v → n
_
  

2) Report (cn , {_v1 , . . ., _vm }) to 

RandomDirec-tory()  

 
In the above pseudocode, RandomDirectory() 
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selects two random directories and returns the one to 

which fewer nodes have reported since its last periodic 

balance. This reduces the imbalance in number of nodes 

reporting to directories. PerformTransfer(v, n
_
) 

transfers virtual server v to node n
_
 if it would not 

overload n
_
, i.e. if _n + _v ≤ cn . Thus a transfer may be 

aborted if the directory scheduled a transfer based on 

outdated information (see below).  
 
Each directory runs the following algorithm. 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

The subroutine ReassignVS, given a threshold k and the 

load information I reported to a directory, computes a 

reassignment of virtual servers from nodes with utilization 

greater than k to those with utilization less than k. Since 
computing an optimal such reassignment. 

                                                                        

Algorithm runs in O(m log m) time, where m is the number 

of virtual servers that have reported to the directory. 

 
ReassignVS(Load & capacity information I, threshold 

k) 
 

1) pool ← {}   
2) For each node n ∈ I, while _n /cn > k, remove 

the least loaded virtual server on n and move it to 
pool.   

3) For each virtual server v ∈ pool, from heaviest to   
lightest,  assign  v to  the  node  n which  minimizes 
(_n + _v )/cn . 

4)  Return the virtual server reassignment. 
 

We briefly discuss several important design issues. 
 
Periodic vs. emergency balancing. We prefer to schedule 

transfers in large periodic batches since this gives Reas-

signVS more flexibility, thus producing a better 

balance. However, we do not have the luxury to wait 

when a node is (about to be) overloaded. In these 

situations, we resort to emergency load balancing. See 

Section V-A for a further discussion of these issues. 
 
Choice of parameters. We set the emergency balancing 

threshold ke to 1 so that load will be moved off a node 

when load increases above its capacity. We compute the 

periodic threshold kp dynamically based on the average 

utilization µˆ of the nodes reporting to a directory, setting 

kp = (1+ µˆ)/2. Thus directories do not all use the same 

value of kp . As the names of the parameters suggest, we 

use the same time period T be-tween nodes’ load 
information reports and directories’ periodic balances. 

These parameters control the tradeoff between low load 

movement and low quality of balance: intuitively, smaller 

values of T , kp , and ke provide a better balance at the 

expense of greater load movement. 
 
Stale information. We do not attempt to synchronize the 

times at which nodes report to directories with the times at 

which directories perform periodic balancing. Indeed, in 

our simulations, these times are all randomly aligned. 

Thus, directories do not perform periodic balances at the 

same time, and the information a directory uses to decide 

virtual server reassignment may be up to T seconds old. 
 
5. Evaluation 
 
We use extensive simulations to evaluate our load 

balancing    algorithm. We show. 

 

• the basic effect of our algorithm, and the necessity of 

emergency action (Section V-A);  

 

• the tradeoff between low load movement and a good 

balance, for various system and algorithm parameters 

(Section V-B);  

 

• the number of virtual servers necessary at various 

system utilizations (Section V-C);  
 

• the effect of node capacity heterogeneity, concluding 

that we can use many fewer virtual servers in a 

heterogeneous system (Section V-D);  

 

• the effect of no uniform    object arrival patterns, 

showing that our algorithm is robust in this case 

(Section V-E);  

Directory(time period T , thresholds ke , kp ) 
• Initialization: I ← {}  

• Information receipt and emergency balancing: 

Upon receipt of J = (cn , {_v1 , . . . , _vm }) 

from node n:  

1) I ← I ∪ J   
2) If un  > ke :  

3) reassignment ← ReassignVS(I, ke )  
4) Schedule transfers according to 

reassignment  
• Periodic balancing: Every T seconds:  

1) reassignment ← ReassignVS(I, kp )  
2) Schedule transfers according to 

reassignment  
3) I ← {} 
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the effect of node arrival and departure, concluding that 

our load balancer never moves more than 60% as much 

load as the underlying DHT moves due to node arrivals 

and departures (Section V-F); and  

 

• the effect of object movement cost being unrelated to 
object load, with the conclusion that this variation has 

little effect on our algorithm (Section V-G).  

 

Metrics. We evaluate our algorithm using two primary 

metrics: 

 

1) Load movement factor, defined as the total 

movement cost incurred due to load balancing 

divided by the total cost of moving all objects in the 

system once. Note that since  

 

the DHT must move each object once to initially 
insert it, a load movement factor of 0.1 implies that 

the balancer consumes 10% as much bandwidth as is 

required to insert the objects in the first place.  

 

2) 99.9th percentile node utilization, defined as the 

maxi-mum over all simulated times t of the 99.9th 

percentile of the utilizations of the nodes at time t. 

Recall from Section II that the utilization of node i is 

its load divided by its capacity: ui = _i /ci .  

 

The challenge is to achieve the best possible tradeoffs 
between these two conflicting metrics. 

 

Simulation methodology. Table I lists the parameters of 

our event-based simulated environment and of our 

algorithm, and the values to which we set them unless 

otherwise specified. 

 

We run each trial of the simulation for 20T simulated 

seconds, where T is the parameterized load balance period. 

To allow the system to stabilize, we measure 99.9th 

percentile node utilization and load movement factor only 

over the time period [10T, 20T ]. In particular, in 
calculating the latter metric, we do not count the 

movement cost of objects that enter the system, or objects 

that the load balancer moves, before time 10T . Finally, 

each data point in our plots represents the average of these 

two measurements over 5 trials. 

 

A. Basic effect of load balancing 

 

Figure 1 captures the tradeoff between load movement and 

99.9th percentile node utilization. Each point on the 

 
lower line corresponds to the effects of our algorithm with

a particular choice of load balance period T . For this and

in  subsequent  plots  wherein we vary T , we  use  T ∈

{60, 120, 180, 240, 300, 600, 1200}. The intuitive trend is 

that as T decreases (moving from left to right along the 

line), 99.9th percentile node utilization decreases but load 

movement factor increases. One has the flexibility of 

choosing T to compromise between these two metrics in 

the way which is most appropriate for the target 
application. 

 

The upper line of Figure 1 shows the effect of our 

algorithm with emergency load balancing turned off. 

Without emergency balancing, for almost all nodes’ loads 

to stay below some  

threshold, we must use a very small load balancing period

T so that it is unlikely that a node’s load rises significantly

 

between periodic balances. This causes the algorithm to 

move significantly more load, and demonstrates the 

desirability of 

 
 

 
 1.35      

Periodic
  

 

         
 

 
1.3     Periodic + Emergency  

 

         
 

U
til

iz
a

tio
n
 

1.25         
 

1.2 
        

 

N
o

d
e
         

 

1.15 
        

 

P
e

rc
e

n
til

e
         

 

1.1         
 

         
 

9
9

.9
th
 

1.05         
 

         
 

 1         
 

 0.95         
 

 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
  

Load Movement Factor 
 
Fig. 1. 99.9th percentile node utilization vs. load moved, for our 
periodic+emergency algorithm and for only periodic action. 
 
Emergency load balancing. In the simulations of the rest of 

this paper, emergency balancing is enabled as in the 

description of our algorithm in Section IV. 
 
B. Load movement vs. 99.9th percentile node utilization 
 
With a basic understanding of the tradeoff between our 

two metrics demonstrated in the previous section, we now 

explore the effect of various environment and system 

parameters on this tradeoff.  
 

In Figure 2, each line corresponds to particular system 

utilization, and as in Figure 1, each point represents a 

particular choice of T between 60 and 1200 seconds. Even 

for system utilizations as high as 0.9, we are able to keep 

99.9 percent of the nodes under loaded while incurring a 

load movement factor of less than 0.08.  
Figure 3 shows that the tradeoff between our two metrics 
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gets worse when the system contains fewer objects of 

com-mensurately higher load, so that the total system 

utilization is constant. Nevertheless, for at least 250, 000 

objects, which corresponds to just 61 objects per node, we 

achieve good load balance with a load movement factor of 

less than 0.11.4 Note that for 100, 000 objects, the 99.9th 

percentile node utilization extends beyond the range of the 

plot, to less than 2.6. However, only a few nodes are 

overloaded: the 99.5th percentile node utilization for 100, 

000 objects (not shown) stays below 1.0 with a load 

movement factor of 0.22. In any case, we believe that our 

default choice of 1 million objects is reasonable.  
 

Figure 4 shows that the number of directories in the 

system has only a small effect on our metrics. For a 

particular load movement factor, our default choice of 16 

directories produces a 99.9th percentile node utilization 

less than 3% higher than in the fully centralized case of 1 

directory. 

 
C. Number of virtual servers 

 
Figures 5 and 6 plot our two metrics as functions of 

system utilization. Each line corresponds to a different 

average (over 
 

4The spike above utilization 1 in the 500, 000-object line 
is due to a single outlier among our 5 trials. 

 
slowed significantly. For homogeneous nodes and objects 

and 
 
a static system, picking d = 2 achieves a load balance 

within a log log N factor of optimal, and when d = Θ(log N 

) the 
 
load balance is within a constant factor of optimal. 

However, this scheme was not analyzed or simulated for 

the case of heterogeneous object sizes and node capacities, 

and in any case is not prepared to handle a dynamic 

system of the kind which we have described. This is 

largely complementary to the work presented in this paper. 
 
Adler et al [9] present a DHT which provably ensures that, 

as nodes join the system, the ratio of loads of any two 

nodes is O(1) with high probability. The system is 

organized as a tree, with additional links for routing in a 

hypercube topology. A joining node considers a small set 

of leaf nodes of the tree and joins the system by splitting 

an appropriately chosen leaf. However, no analysis of 

node departure was given and the system does not deal 

with varying node capacity or object distribution. 
 
Karger and Ruhl [10] propose algorithms which 

dynamically balance load among peers without using 

multiple virtual servers by reassigning lightly loaded 

nodes to be neighbors of heavily loaded nodes. However, 

they do not fully handle the case of heterogeneous node 

capacities, and while they prove bounds on maximum 

node utilization and load movement, it is unclear whether 
their techniques would be efficient in practice. 
 
Douceur and Wattenhofer [11] have proposed algorithms 

for replica placement in a distributed file system which are 

similar in spirit with our algorithms. However, their 

primary goal is to place object replicas to maximize the 

availability in an untreated P2P system, while we consider 
the load balancing problem in a cooperative system. 

Triantafillou et al. [12] have recently studied the problem 

of load balancing in the context of content and resource 

management in P2P systems. However, their work 

considers an unstructured P2P system, in which meta-data 

is aggregated over a two-level hierarchy. 
 
There is a large body of theoretical work in load balancing 

problems similar to ours in that they seek to minimize both 

maximum load and amount of load moved. This includes 

Aggarwal et al [13] in an offline setting similar to that of 

our periodic load balancer, and Westbrook [14], Andrews 

et al [15], and others (see Azar’s survey [16]) in an online 

setting. It would be interesting to study whether these 

algorithms can be adapted to our system. 
 

90% while transferring only about 8% of the load that 

arrives in the system, and performs only slightly less 
effectively than a similar but fully centralized balancer. In 

addition, we found that heterogeneity of the system can 

improve scalability by reducing the necessary number of 

virtual servers per node as compared to a system in which 

all nodes have the same capacity. 
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