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Abstract - Although image denoising is widely studied, the 

effect of noise in image endures in image processing. Most 
of the existing research works have used the basic noise 
reduction through image blurring but without much 

impact. As researchers continue to focus on the subject, it 
is important to appreciate the need for effective denoising 

methods for quality images. While some methods have 
managed to denoise some types of noise, in the process they 

affect the image quality. This research intended to establish 

an approach for denoising images while maintaining the 
image quality. To create this approach, several denoising 

approaches and algorithms have been studied to determine 
their shortcomings and a combination of two, i.e. Shearlet 
Transform and PCA (Principle Component Analysis 

Algorithm was deemed viable in adding value to the 
existing denoising methods. The combination method 

increases the superiority of the observed image, 

subjectively and objectively.   
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1. Introduction 
 

Image denoising is an important issue in image 

processing but most image denoising models incorporate 

parameters which are closely related to the noise level. 

Since in often cases the noise level is unknown, the 

problem of choosing parameters occasionally becomes 
difficult, and consequently, the resulting algorithm may 

produce unsatisfactory images (Singh et al, 2012). 

During the imaging, it is inevitable for content of image 

to be contaminated by noise. In order to exactly extract 

image features or make correct analysis of the image, the 

reprocessing of denoising is essential. Indeed, the 

problem of image denoising has been studied for some 

decades, but there still exists gaps occasioned by the 

inherent complication of the inverse problem. For the 

existing methods, such as spatial filtering (local or non- 

local (Woods &Conzolez, 2008), PDE-based anisotropy 
diffusion (Zhang et al, 2012) transform- based threshold 

shrinkage (Donoho, 1995), sparse decomposition and 

restoration (Elad, 2006), they all have weakness and 

strong points. Among them, NLM and BM3D represent 

the state-of-the-art (Dabov et al 2007), but they suffer 

from high complexity and heavy computation. 
 

2. PCA (Principle Component Analysis) 

Algorithm 
 

Principal component analysis is considered as one of the 

most common multivariate data and signal analysis 

methods (Gruber et al., 2004). It transfers the correlated 

linearly data to un-correlated data in special domain, 

known also by feature space and it has many 

applications such as dimensional reduction in Gaussian 

signals and it is used in a whitening process of noisy 

images as well (Hyvarinen et al. , 2011. PCA can be 

accomplished by using eigen value corrosion of the data 

that contain covariance matrix. The data that has the 
largest eigen values may have the main data details. We 

use this feature to separate the pure signal from the noisy 

components and it gives effective results in the 

denoising algorithm. Image denoising by principal 

component analysis with local pixel grouping (LPG-

PCA) was developed by (Lei et. in 2010) It is based on 

the assumption that the energy of a signal will 

concentrate on a small subset of the PCA transformed 

dataset, while the energy of noise will evenly spread 

over the whole dataset. Assume original image is 

denoted by and noise is denoted by , then the 

measured image will be ……..1  

 

In order to denoise , first a train dataset must be 

constructed using local pixel group. Using this and 
apply PCA the noise in the image can be reduced. 

 

2.1 Construct Local Pixel Group 

 

For each pixel in the image, select a 

window centered at denoted by 
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……2 

And a training window centered at . The training 

window is   

…3 

Take the pixels in each possible block within 

the training block yields samples . If the distance 

between a sample and the center window is smaller 

than some threshold, then accept the sample. So the train 

dataset is acquired by putting all the accepted 

sample together as column vectors into a matrix. 

2.2Denoising Using Local Pixel Group 
 

First step of this part is centralize and is 

obtained. By computing the covariance matrix of 

denoted by , the PCA transformation matrix can 

be obtained. Apply to we have 

………………..4 

The covariance matrix of can also be calculated by 

………………5 

Shrink the coefficient of by 

 

 
 

………………………………………..6 

 

And transform back to , the noise in that pixel is 
reduced. Apply this to all the pixels in the image and the 

denoised image can be obtained. Experiments by Lei 

show that LGP-PCA can effectively preserve the image 
fine structures while smoothing noise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Stage implementation of LPG-PCA Algorithm 

 

 

2. 3 Advantages and Disadvantages Of Principal 

Component Analysis 
 

Advantage 

Preserves local image structure during denoising 

 

Disadvantage 

PSNR is low. 

 

3. Shearlets 
 

Shearlets, in particular, offer a unique combination of 

very remarkable features: they have a simple and well 

understood mathematical structure derived from the 

theory of affine systems .they provide optimally sparse 

representations, in a precise sense, for a large class of 

images and other multidimensional data where wavelets 

are suboptimal and the directionality is controlled by 

shear matrices rather than rotations. This last property, 

in particular, enables a uniped framework for continuum 

and discrete setting since shear transformations preserve 
the rectan-gular lattice and is an advantage in deriving 
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faithful digital implementations. The shearlet 

decomposition has been successfully employed in many 

problems from applied mathematics and signal 

processing, including decomposition of operators, 

inverse problems edge detection, image separation and 

image restoration. However, one major bottleneck to the 

wider applicability of the shearlet transform is that 

current discrete implementations tend to be very time 

consuming making its use impractical for large data sets 

and for real-time applications. For instance, the current 

(CPU-based) MATLAB implementation of the 2D 

shearlet transform, run on a typical desktop PC, takes 

about two minutes to denoise a noisy image of size 512 

x512. The running time of the current (CPU-based) 

MATLAB implementation of the 3D shearlet transform 

for denoising a video sequence of size 192 is about five 

minutes. 

 
Shearlets were introduced with express intent to provide 

a highly efficient representation of images with edges. In 

fact, the elements of the shearlet representation form a 

collection of well-localized wave forms, ranging at 

various locations, scales and orientations, and with 

highly anisotropic shapes. This makes the shearlet 

representation particularly well adapted at representing 

the edges and the other nisotropic objects which are the 

dominant features in typical images. As will be 

described below, these properties have direct and 

important implications for the efficient encoding and 
processing of discrete data. This is demonstrated by an 

increasing number of very competitive numerical 

applications of the shearlet transform to the analysis and 

processing of images and other multi-dimensional data. 

The significance of sparsityfor data restoration is well 

understood and has been addressed in seminal papers 

such as [20, 27]. Indeed, consider the classical problem 

of recovering a function f∈L2 (R) from noisy data y, that 

is, of recovering f from the observation y = f + n, where 

n is Gaussian white noise with standard deviation σ. 

 
Finding optimal representations of signals in higher 

dimensions is currently the subject of intensive research. 

An important motivation is to obtain directional 

representations which capture directional features like 

orientations of curves in images while providing sparse 

decompositions. Since wavelets, although proving to be 

a satisfactory tool in one dimension, do not provide any 

directional information, several new representation 

systems were proposed in the past, including ridgelets 

and curvelets. The shearlets are an affine system with a 

single generating mother shearlet function parameterized 
by a scaling, shear, and translation parameter - the shear 

parameter capturing the direction of singularities. The 

continuous shearlet transform precisely detects the 

direction of singularities, in the sense of resolving the 

wave front set of distributions. This transform can even 

be regarded as matrix coefficients from a group 

representation of a special non-abelian group, the 

shearlet group, thereby providing an extensive 

mathematical framework for its theory, i.e., for studying 

the uncertainty principle related to the shearlet group 

aiming to derive mother shearlet functions which ensure 

optimal accuracy of the parameters of the associated 

transform. The associated discrete shearlet transform can 

be shown to be provide optimally sparse representations 

for 2-D functions that are smooth away from 

discontinuities along curves. Another benefit of this 

approach is that, again thanks to their mathematical 

structure, these systems provide a Multiresolution 

analysis similar to the one associated with classical 

wavelets, which is very useful for the development of 

fast algorithmic implementations. 

 

3.1 Some Approaches of Shearlets 

 

3.1.1 Discrete Shearlet Transform (DST) 
 

Discrete shearlet transform (DST) provides efficient 

multiscale directional representation. The 

implementation of the transform is built in the discrete 

framework based on a multiresolution analysis. Sharp 

image transitions or singularities such as edges are 

expensive to represent and integrating the geometric 

regularity in the image representation is a key challenge 
to improve state of the art applications to image 

compression and denoising. To exploit the anisotropic 

regularity of a surface along edges, the basis must 

include elongated functions that are nearly parallel to the 

edges. Several image representations have been 

proposed to capture geometric image regularity. They 

include curvelets contourlets and bandelets. In 

particular, the construction of curvelets is not built 

directly in the discrete domain and they do not provide a 

multiresolution representation of the geometry. In 

consequence, the implementation and the mathematical 

analysis are more involved and less efficient. Contour 
lets are bases constructed with elongated basis functions 

using a combination of a multi-scale and a directional 

filter bank. However, contour let shave less clear 

directional features than curvelets, which leads to 

artifacts in denoising and compression. Bandelets are 

bases adapted to the function that is represented. 

Asymptotically, the resulting bandelets are regular 

functions with compact support, which is not the case 

for contour lets. However, in order to find bases adapted 

to an image, the bandelet transform searches for the 

optimal geometry. For an image of N pixels, the 
complexity of this best bandelet basis algorithm is O 

(N3=2) which requires extensive computation .Recently, 

a new representation scheme has been introduced . 

These so called shearlets are frame elements which yield 

(nearly) optimally sparse representations. This new 

representation system is based on a simple and rigorous 

mathematical framework which not only pro-vides a 

more flexible theoretical tool for the geometric 

representation of multidimensional data, but is also more 

natural for implementations. As a result, the shearlet 

approach can be associated to a multiresolution analysis. 

However constructions proposed do not provide 
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compactly supported shearlets and this property is 

essentially needed especially in image processing 

applications. In fact, in order to capture local 

singularities in images efficiently, basis functions need 

to be well localized in the spatial domain. 

 

3.1.2 Continous Shearlets 
 

Continuous wavelet transform has the ability to identify 

the set of singularities of a function or distribution f. It 

was recently shown that certain multidimensional 

generalizations of the wavelet transform are useful to 

capture additional information about the geometry of the 

singularities of f  . Consider the continuous shearlet 

transform, which is the mapping 

f∈L
2
(R

2
)→SHψf(a,s,t)=〈f,ψast〉f∈L2(R2)→SHψf(a,s,

t)=〈f,ψast〉, where the analyzing elements ψastψast 

form an affine system of well localized functions at 

continuous scales a>0a>0, locations t∈R
2
t∈R2, and 

oriented along lines of slope s∈Rs∈R in the frequency 

domain. We show that the continuous shearlet transform 

allows one to exactly identify the location and 

orientation of the edges of planar objects. In particular, if 

f=∑n=1NfnχΩn where the functions 
fnfn are smooth and the sets ΩnΩn have smooth 

boundaries, then one can use the asymptotic decay of 

SHψf(a,s,t)SHψf(a,s,t), s a→0a→0 (fine scales), to 

exactly characterize the location and orientation of the 

boundaries ∂Ωn∂Ωn. This improves similar results 

recently obtained in the literature and provides the 

theoretical background for the development of improved 

algorithms for edge detection and analysis. 
 

An example of a continuous shearlet can be constructed 

as follows: Let ψ1be a continuous wavelet 

withˆψ1∈C∞(R) and suppˆψ1⊆[−2,−12]∪[12,2], and 

letψ2 be such that  

ˆψ2∈C∞(Rn−1) and suppˆψ2⊆[−1,1]n−1. Then the 

functionψ∈L2(Rn) defined byˆψ(ω) =ˆψ(ω1,ω) 

=ˆψ1(ω1)ˆψ21ω1ωis a continuous shearlet. The support 

ofˆψisdepiced for ω1≥0 
 

3.2 Merits and Demerits of Shearlets 
          

Merits: 

 

1 Image enhancement 

2 Image separation 

3 Edge detection -the continuous shearlet transform is 

able to precisely capture the geometry of edges 
 

Demerits: 

 

1. It is a complex method 

2. It causes unwanted non-smooth artifact 

 

 

 

4. Combination of Shearlet and Principle 

Component Analysis 
 

This proposed method is by combining shearlet 

denoising approach and PCA denoising approach. 

 

 

 

 

 

       PCA 
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                           FINAL IMAGE 

 
Fig 3: Combined Method Diagram 

 

 

5. Results 

 

 
 

Fig 4 a Original Image 

 

 
 

Fig 4 b Noisy image σ =30 

  NOISY IMAGE 
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Fig 4c Denoised by PCA 

 

 

 

Fig 4d final image denoised by shearlets 

Figure 4 a is the original image which is noise free. 

Figure 4b is a noisy image with Gaussian noise   σ=30. 

Figure 4 c is the image obtained after 1
st
 denoising stage 

of PCA. Figure 4d is the final image obtained after 

second stage of denoising using shearlets. 

 
Table 1: Values of MSE and PSNR of Lena Image after 1st& 2nd stage 

of denoising 
 

NOISY IMAGE 

(σ=30) 

1
st
 Denoising 

stage 

2
nd

 Denoised 

stage 

MSE PSNR MSE PSN

R 

MSE PSNR 

884.74 18.7 256.1 24.1 59.3 32.5 

 

 
 
 

 

 
Figure 5a Original image 

 

 
Figure 5b Noisy image 

 

Figure 5c denoised by PCA 
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Figure 5d denoised by shearlets 

 
Table 2: Values of MSE and PSNR of Parrot Image after 1st& 2nd stage 

of denoising 

 

 

 

 

 
 

6. Discussion  
 

The quality of the image can be analyzed by both human 

visual and by using PSNR values. When the image of 
Lena with Gaussian noise σ=30 is denoised by separate 

methods, shearlet gives PSNR value of 30.6 and PCA 

gives 24.1. When the two methods are combined, the 

final PSNR value is 32.5 which is higher than for the 

separate methods. When the image of parrot with 

Gaussian noise σ=30 is denoised by separate methods, 

shearlet gives PSNR value of 26.3 and PCA gives 24.51 

When the two methods are combined, the final PSNR 

value is 29.0 which is higher than for the separate 

methods 

 

 

 
Table: 3 Review Table 

 

Name comments address 

   

   

   

 

 

7. Conclusion 
 

The combined method gives better results both byhuman 

visual and by PSNR values Similarly, when the two 

methods are used the properties of shearlet to enhance 

and detect image edges and the property of PCA of 

preserving image structures improves the final mage. 
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