
IJCAT - International Journal of Computing and Technology, Volume 1, Issue 9, October 2014
ISSN : 2348 - 6090
www.IJCAT.org

486

Deep Web Technologies

1 Sagar Kumar Choudhury, 2 Rajesh Kumar Padhi, 3 B.Giridhar, 4Chandan Kumar Giri

1, 2 B.Tech Student

 3, 4 Asst.prof in CSE dept

Abstract - With the proliferation of online repositories (e.g.,

databases or document corpora) hidden behind proprietary web
interfaces, e.g., keyword-/form-based search and

hierarchical/graph-based browsing interfaces, efficient ways of

exploring contents in such hidden repositories are of increasing

importance. There are two key challenges: one on the proper
understanding of interfaces, and the other on the efficient
exploration, e.g., crawling, sampling and analytical processing,

of very large repositories. In this tutorial, we focus on the
fundamental developments in the field, including web interface

understanding, crawling, sampling, and data analytics over
web repositories with various types of interfaces and

containing structured or unstructured data. Our goal is to

encourage audience to initiate their own research in these
exciting areas.

Keywords – Web Technologies.

1. Introduction

The tutorial shall begin with a series of real-world

examples of deep web repositories hidden behind web

interfaces (see Figure for a typical architecture).

Specifically, a repository with structured data is Yahoo!

Autos (http://autos. yahoo.com), while an unstructured

one is the document corpus of Wikipedia.

We shall then use these examples to motivate the
importance of efficient exploration over hidden web

repositories. In particular, we shall show that many

repositories only support a very restrictive set of search

queries. To provide full (SQL) search support, one may

need to crawl all elements from a repository and then

execute the search locally. We shall also discuss the

need of mining over hidden repositories. To support

mining without incurring as many web accesses as

crawling, one needs the ability to efficiently perform

sampling and analytical processing over a hidden

repository. We shall note that this tutorial focuses on
deep web repositories with given URLs.

Resource discovery - i.e., how to find URLs of deep web

repositories (e.g., for a given topic) - is an orthogonal

problem.

Taxonomy of Web Interfaces: We shall describe four

types of interfaces commonly present for web

repositories: keyword search (e.g., Google), form-like

search (e.g., Yahoo! Autos), hierarchical browsing

(e.g., Amazon’s drop-down menu for product browsing),

and graph-based browsing (e.g., Wikipedia).

Exploration Tasks: We shall describe three important

tasks commonly desired for the deep web: crawling,

sampling, and data analytics (e.g., the efficient

processing of aggregate queries). We shall argue that

while samples may also support aggregate (e.g., AVG)

estimation, performing data analytics directly may be

more efficient as its design can be made aligned with the

specific aggregates to be estimated. On the other hand,
sampling is more “versatile”, as a collected sample may

later support analytical tasks not yet known at the time

of sampling.

2. Challenges

Our tutorial shall next discuss why the three tasks

outlined above are difficult to accomplish over deep web

repositories. We summarize two key challenges, one on

understanding the interface - e.g., how to model web

query interfaces and perform schema matching - and the

other on the efficient exploration of data - e.g., how to

determine which queries/browsing requests to issue,
especially given the extremely restrictive input and

output interfaces of a hidden web repository. We devote

the rest of our tutorial to addressing the second (i.e.,

exploration) challenge. For the first one, we shall briefly

review it and point audience to recent tutorials covering

the topic.

3. Mining the Deep Web

In this first article in a series we introduce the deep web

and tell you why, as a business or scientific professional

you should care about mining its content. In later articles

we will discuss in more depth some of the technical

challenges to mining the deep web and how Deep Web

Technologies and other companies are meeting those

challenges.

The Internet is vast and growing - that's not news.
Google does a great job of finding good information

IJCAT - International Journal of Computing and Technology, Volume 1, Issue 9, October 2014
ISSN : 2348 - 6090
www.IJCAT.org

487

within it - that's not news either. What is news, and one

of the dirty little secrets of Internet search engines, is

that there's a huge collection of really useful content on

the Internet that Google will never find - nor will any of

its competitors, or any single search engine for that

matter. We like to think that Google knows all, that if

we click through enough of its search results we'll find

whatever we need. This just isn't so. Beyond the 'surface

web' of content that's continuously mined is the 'deep

web'.

So, you're wondering, 'What is the deep web?' and 'Why

haven't I ever heard of it?' In reality you've probably

searched the deep web, maybe even surfed it, and never

even realized it. The deep web is the collection of

content that lives inside of databases and document

repositories, not available to web crawlers, and typically

accessed by filling out and submitting a search form. If
you've even researched a medical condition at the

National Library of Medicine's PubMed database

www.ncbi.nlm.nih.gov/PubMed/ or checked the weather

forecast at www.weather.com then you've been to the

deep web. Three nice properties of deep web content are

that it is usually of high quality, very specific in nature,

and well managed. Consider the PubMed example.

Documents cited in PubMed are authored by

professional writers and published in professional

journals.

They focus on very specific medical conditions. The

National Library of Medicine spends money to manage

and make their content available. Weather.com provides

timely and specific reports of weather conditions for all

of the United States and much of the rest of the world as

well. Both collections share the three properties.

The deep web is everywhere, and it has much more

content than the surface web. Online TV guides, price

comparison web-sites, services to find out of print

books, those driving direction sites, services that track

the value of your stocks and report news about
companies within your holdings - these are just a few

examples of valuable services built around searching

deep web content.

So, why doesn't Google find me this stuff? The answer

is that Google isn't programmed to fill out search forms

and click on the submit button. The problem is that there

are no standards to guide software like the smarts behind

Google in how to fill out arbitrary forms. In fact,

computers don't 'fill out' and submit forms, they instead

interact with the web server that's presenting the form,
and send it the information that specifies the query plus

other data the web server needs. Each web form is

different and there are too many of them so Google can't

know how to search them all. Plus, it currently takes a

human to 'reverse engineer' a web form to determine

what information a particular web server wants.

Standards are emerging to help with the content access

problem and software will certainly get better at filling

out unfamiliar forms but we have a long way to go

before most of the deep web is accessing to the next

generation of web crawlers. While filling out that web

form is non-trivial it isn't the only barrier to accessing

the deep web and it isn't even the hardest problem.

Finding the best, or most relevant, content is harder.

Within the deep web it means searching multiple

sources, collating the results, removing duplicates and

sorting the remaining results by some criteria that is

meaningful to the person doing the searching. The

problem of finding, aggregating, sorting and presenting

relevant content is an involved one that we don't want to

just gloss over so we will dedicate an entire article to

discussing the issues.

As a professional you should care about What's in the
deep web and about how to mine it effectively and

efficiently. 'Why is that?' you ask. It's simple. In the

worlds of business, science and other professional

endeavors time is money. The slow and steady tortoise

may win the race in fairy tales but it's going to get run

over or left in the dust in today's competitive

marketplace. The race to bring a new product to market,

whether it be a new computer chip or a new drug, will

be won by the company that can most quickly gather the

most relevant information and intelligence and execute

on it before its competitors do. A tool that can fill out
forms on a number of web-sites with that high quality,

specific and well managed content -- whether it be

purchased, internal, or publicly available content -- then

do the heavy duty processing to deliver the best of the

best documents is worth its weight in gold. Such a tool

will save you time and money and will make the best

use of the content that you pay to acquire.

Imagine taking all of the intellectual property you

possess or to which you have access and integrating its

access into one simple to use form. Imagine further a

system that knows what makes a certain document
relevant to you as an individual. This system would be

customized to scour your content plus all sorts of

knowledge bases relevant to your needs and sift and sort

information to present you with the very best of the deep

web on demand. It would save you time. It would help

you make money. This is the promise of deep web

mining.

4. Challenges of the Deep Web Explorers

Web spiders these days, it seems, are a dime a dozen.

Not to minimize the tremendous value that Google and

other search engines provide, but the technology that

gathers up or “spiders” web pages is pretty

straightforward. Spidering the surface web, consisting

mostly of static content that doesn’t change frequently,

IJCAT - International Journal of Computing and Technology, Volume 1, Issue 9, October 2014
ISSN : 2348 - 6090
www.IJCAT.org

488

is mostly a matter of throwing lots of network

bandwidth, compute power, storage and time at a huge

number of web sites.

Merely throwing lots of resources at the deep web, the

vast set of content that lives inside of databases and is

typically accessed by filling out and submitting search

forms, doesn’t work well.

Different strategies and a new kind of “deep web

explorer” are needed to mine the deep web. Surface web

spiders work from a large list, or catalog, of known and

discovered web sites. They load each web site’s home

page and note its links to other web pages. They then

follow these new links and all subsequent links

recursively. Successful web crawling relies on the fact

that site owners want their content to be found and that

most of a site's content can be accessed directly, or by
following links from the home page. We can say that

surface web content is organized by an association of

links, or in HTML jargon, an association of <A HREF>

tags. We should note that spidering is not without its

hazards. Spiders have to be careful to not recrawl links

that they’ve previously visited lest they get tangled up in

their own webs!

If spidering the surface web is not an impressive

achievement then what makes Google’s technology so

highly touted? In the case of Google and of other good
search engines what’s impressive is not the ability to

harvest lots of web pages (although Google currently

searches over four billion pages) but what the engine

does with the content once it finds it and indexes it.

Because the surface web has no structure to it good

search technology has to make relevant content easy to

find. In other words, a good search engine will create the

illusion of structure, presenting related and hopefully

relevant web pages to a user.

Google’s claim to fame is its popularity-based ranking.

It structures content by presenting first to the user web
pages that are most referenced by other web pages. The

deep web is a completely different beast. A web spider

trying to harvest content from the deep web will quickly

learn that there are none of those <A HREF> links to

content and no association of links to follow.

It will realize that most deep web collections don’t give

away all of their content as readily as surface web

collections do. It will quickly find itself faced with the

need to speak a foreign language to extract documents

from the collection. This need is definitely worth
meeting since the quantity and quality of deep web

content is so much greater than that of the surface web.

Deep web explorers approach content searching in one

of two ways, they either harvest documents or they

search collections on the fly. A deep web explorer may

attempt to harvest content from a collection that doesn’t

support harvesting but, for reasons cited below, the

effort will likely not be very fruitful. Dipsie and

BrightPlanet are harvesters. They build large local

repositories of remote content. Deep Web Technologies

and Intelliseek search remote collections in real time.

Harvesting and real time search approaches each have

their pluses and minuses. Harvesting is great if you have

adequate infrastructure to make the content you’ve

collected available to your users and if you have a

sufficiently fat network pipe plus enough processing and

storage resources to get, index and save the content

you’ve obtained. Harvesting isn’t practical if the search

interface doesn’t make it easy to retrieve lots of

documents or if it’s not easy to determine how to search

a particular collection. If the collection doesn’t support a

harvesting protocol then harvesting will not retrieve all

documents. Additionally, not having the network

bandwidth and other resources makes harvesting

impractical. And, if a collection is constantly adding
documents then either the collection is going to

somehow identify new content or you’re going to waste

lots of resource retrieving the documents already in your

local repository just to get a few new documents.

OIA, the Open Archives Initiative, is an example of a

harvesting protocol. OIA describes a client-server model

useful for aggregating multiple collections into a single

centralized collection. The server tells the client, among

other things, what documents are new in its collection

and the client updates its repository with them.

Deep Web Technologies’ (DWT) Distributed Explorit

application implements the other approach, the real-time

search approach, which also has its pluses and minuses.

A tremendous plus is that most deep web collections

lend themselves to real-time searching even if they don’t

lend themselves to harvesting. This is because by not

implementing a harvesting protocol the content owner

doesn’t have to do anything to its documents to allow

them to be searched; it doesn’t need to generate

metadata or otherwise structure its content. An on-the-

fly search client uses the simple HTTP protocol to fill
out and submit a web-form that initiates a query against

the content database. The client then processes (parses)

the content returned and displays search results to the

user. DWT’s Distributed Explorit does multiple

simultaneous real-time searches against different

collections then aggregates the results and displays them

to the user. The minuses of the harvesting approach

become pluses in real-time searching. That entire

infrastructure you needed to retrieve, store, refresh and

index remote content and to then provide access to it

disappears.

Minuses of real-time searching are the ongoing demands

placed on the remote collection, the reliance on the

availability of the remote content, the vulnerability of

depending on search forms that change or break, and the

inability to rank documents in a homogenous and

effective way. (Search engines are notorious for ranking

poorly or not at all and even collections that do rank

IJCAT - International Journal of Computing and Technology, Volume 1, Issue 9, October 2014
ISSN : 2348 - 6090
www.IJCAT.org

489

documents in a relevant way can’t deal with the fact that

their well-ranked documents will likely be aggregated

with documents from other poorly ranked documents.)

Now that we’ve tapped into the vast content of the deep

web we quickly discover that we’re drowning in content

and not all of it is so relevant. What’s a web explorer to

do with so many documents? We’ll explore this question

next time.

5. Crawling

In this part of the tutorial, our focus is on discussing the

crawling of a deep web repository after its interface is

properly understood. We shall start with illustrating the

motivations for crawling, and then discuss existing

crawling techniques for repositories with search and

browsing interfaces, respectively.

Search Interfaces: We shall identify two main

prerequisites for efficient crawling over search

interfaces: One is how to generate “legitimate” values

for populating into input fields (e.g., query phrases as

keywords). The other is how to input values such that

each combination returns a large number of distinct

elements.

Since solutions to both depend upon the repository’s

content, most existing techniques feature a bootstrapping
process which starts with a small number of probing

search queries, then uses the returned results to refine

the selection of input keywords or attribute value

combinations to quickly achieve high coverage. reduced

to the traversal of vertices in a tree (for hierarchical

browsing) or a graph (for graph-based browsing). The

common technique is breadth-first search (aka snowball

method). While the technique itself is relatively

straightforward, we shall point out to the audience that

the main challenge is the comprehensiveness of

crawling, as the graph is not necessarily connected. We
shall discuss techniques used by existing crawlers to

address this issue. We shall conclude this part of the

tutorial with discussions of the system-related issues

(e.g., using a cluster of machines for crawling) that

apply to both types of interfaces.

6. Sampling

In this portion, we discuss sampling techniques which

aim to draw representative elements (e.g., documents,

tuples) from an online repository while minimizing the

number of web accesses.

We shall start the discussion with motivating

applications for sampling, and then review existing

techniques for keyword search, form-like/hierarchical

browsing, and graph browsing interfaces, respectively

Keyword-Search Interface: We begin by showing that

a key problem facing the “sampling” process in many

existing techniques is that the returned elements have an

unknown but often significant skew, i.e., certain

elements are sampled with much higher probability than

others. We shall then discuss a skew-correction

technique through rejection sampling.

Form-like Search or Hierarchical Browsing

Interface: Skew reduction remains a challenge here. In

particular, the main source of skew is the scoring

function used by the interface to determine which top-k

elements to return. We shall discuss two ideas of skew

removal: One is to avoid the influence of scoring

function by finding queries that return <k elements. The
other idea assigns a one-to-many mapping from queries

to elements in the repository, such that even if a highly

scored tuple is returned by more queries, it can only be

sampled from one.

Graph Browsing Interface: We shall describe two

types of existing techniques for sampling over a graph

browsing interface: (1) the early work which uses

BFS/snowball sampling to produce sample elements
with an unknown skew; and (2) the random walk based

techniques which has roots in the theory of finite

Markov chains to produce known (and thus removable)

skew over connected graphs.

7. Data Analytics

We shall now discuss analytics techniques for online

repositories. We shall first argue that the key enabler for

data analytics is the ability to approximately answer

aggregate queries over an online repository, and then

describe a few motivating examples of aggregate

queries. After that, we shall discuss bias and variance,
two complementary measures for the accuracy of

aggregate estimations, and then review the existing

techniques for the three types of interfaces, respectively.

Keyword-Search Interfaces: We shall focus on two

types of data analytics techniques over keyword search

interfaces. One is a two-step process which first calls

upon the above-discussed sampling techniques to

produce sample elements, and then use the sample to

extract aggregate information for analytics. The other
type of technique directly estimates aggregates without

the middle step of sample generation. A key advantage

here is that unlike in the sampling case where many

retrieved elements may have to be rejected for skew

removal, all retrieved elements may be used, albeit in a

weighted fashion, for aggregate estimations.

Form-like Search or Hierarchical Browsing

Interfaces: We shall first demonstrate that a direct

estimation of aggregates over form-like or hierarchical

browsing interfaces avoids the costly process of

rejecting elements for eliminating sample skew.

Then, we shall explain why SUM and COUNT queries

can be easily estimated without bias, while doing so for

IJCAT - International Journal of Computing and Technology, Volume 1, Issue 9, October 2014
ISSN : 2348 - 6090
www.IJCAT.org

490

AVG queries is extremely difficult if not impossible.

After that, we focus on variance-reduction techniques

for improving estimation accuracy. Before concluding

this part, we shall briefly discuss a few recent works

which have the exact opposite objective – i.e. to prevent

aggregate queries from being estimated (accurately)

through a form-like interface, in order to protect the

privacy of aggregate information for repository owners.

Graph Browsing Interfaces: We shall start by arguing

that data analytics over graph browsing interfaces is

closely related to the problem of graph testing, as the

latter assumes an access cost to learning whether an

edge exists in the graph, resembling the web access cost

for a graph browsing interface, and aims to learn certain

(aggregate) information of the graph while minimizing
the access cost. Nonetheless, we shall argue that the cost

models of real-world interfaces are much more diverse

than what have been studied in graph testing, leading to

vastly different solutions and calling for further research

on the cost models. We shall then discuss the existing

work for aggregate estimation using random walks,

random BFS, etc.

8. Proposed Methodology

The work is having three major parts first is web surfer

search engine second is training of dataset last is

extracting relevant data after mining from large data

warehouse.

8.1 Web Surfer Search Engine

In this proposed method, search engine will provide only

relevant link to the customers. At the time of crawling,

the word gets divided and the sentence will be split into

tokens and each token is assigned with consecutive

numerical value.

Meanwhile, each word is matched up in web and then

frequency check will decide whether that particular

keyword exist in web or not

Figure 1

8.2 Training Data Set

In this stage the set of data will train and find out all the

related links and then store it into a large data

warehouse. The training data set is the major part of this

stage. Training data set has a vital role in the

identification of useful data.

Figure 2

8.3 Extracting Relevant Data after Mining

This is the final and most important step of our work in

which the relevant data is extracted from a huge set of
data stored in data warehouse. The focus will be on

mining the data from data warehouse and fetch the

relevant links in to the search engine.

Figure 3

9. Proposed Outcome

At this stage the proposed outcome is keyword which

user will enter the keyword in search engine that

keyword goes to the web, fetch all the related links and

stored in to the large data warehouse. Then from there

the essential data will be extracted with the help of data

mining techniques and user will get the useful data as

output.

10. Conclusions

We shall summarize how the challenging problems of

crawling, sampling and analytics over hidden web

repositories require expertise in traditional query

processing, IR, social networks, data mining as well as

algorithms. We shall conclude by identifying open

challenges.

References

[1] Claudia Elena Dinuca, Association and Sequence

Mining in Web Usage, Economics and Applied

Informatics, 2011.

IJCAT - International Journal of Computing and Technology, Volume 1, Issue 9, October 2014
ISSN : 2348 - 6090
www.IJCAT.org

491

[2] Hsinchun Chen, Xin Li, Michael Chau, Yi-Jen Ho,
Chunju Tseng, Using Open Web APIs in Teaching

Web Mining, ACM, 2009.
[3] Sachin Pardeshi, Ujwala Patil, Central web mining

services–public and free access log files, WJST, 2012.

[4] B.Naveena Devi, O.Sreevani, Dynamic Modelling

Approach for Web Usage Mining Using Open Web
Resources, IJEST, 2010.

[5] Sanket Nagone, Bharat Kapse, Mayur Bhagwat,

Ecommerce Application using Web API and Apriori
Algorithm of Data Mining, IJCA, 2011.

[6] Claudia Elena Dinuca, The process of data pre-
processing for Web Usage Data Mining through a

complete example, Annals of the “Ovidius” 2011.

