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Abstract - In this paper, we present a generalization of our 

original secure quantum information exchange (SQIE) protocol 
[J. Phys. B: At. Mol. Opt. Phys. 44 (2011) 115504], for the secure 
exchange of two single qudit (an arbitrary d-level system) 
information states between the two legitimate users, Alice and 
Bob. Further we extend this result from single qudit to multi-
qudits to obtain the secure exchange of the information states 
involving arbitrary number of qudits.  
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1. Introduction 
 

Quantum teleportation (QT), first introduced by Bennett et 

al [1], is one way quantum communication between two 

users, Alice and Bob, in which an unknown information 

state is transferred from Alice (sender) to Bob (receiver) 

without physically sending it. After introduction of the 

idea of QT, a number of theoretical studies [2-3] on QT 
have been done. Also several experiments [4-6] 

demonstrating QT have been done. In some studies on QT 

[7-9], a third party is included between the two users, 

Alice and Bob. This third party controls the whole process 

of QT with Alice due to which the security of QT 

increases. Thus, this process is termed as controlled QT.  

Many authors extended the original scheme of QT to 

teleport arbitrary 2-qubit information state [10-12] and 

further, to teleport arbitrary n-qubit information state [11, 

13-16]. Arbitrary 2-qubit information state can be 

teleported using generalized Bell states, which are tensor 

products of two standard bipartite Bell states [11], while 
arbitrary n-qubit information state can be teleported using 

generalized Bell states of 2n-qubits, which are tensor 

product of n-standard bi-partite Bell  states [11, 13]. To 

increase the security of these QT schemes, some authors 

[15-16] proposed the controlled QT of unknown 

information states of multi-qubits by introducing a third 

observer or a number of observers between two legitimate 
observers, Alice and Bob. In all the above studies on QT 

are based on qubits, i.e., two level systems. For the 

systems of arbitrary d-levels (qudits), many authors have 

extended the above studies on QT and presented the QT 

schemes to teleport single qudit information states [17, 18] 

and also to teleport arbitrary n-qudit information states 

[19]. Further, some authors have proposed the controlled 

QT of information states involving multi qudits [20-25]. 

The aim of above studies on QT is to send unknown 

information states from Alice to Bob, i.e., one way 

quantum communication. In a very recent paper [26], the 
authors presented a new idea called secure quantum 

information exchange (SQIE) that allows two-way 

quantum communication between Alice and Bob. Initially, 

if each of Alice and Bob has single qubit information state, 

the SQIE protocol gives the simultaneous exchange of 

information states from Alice to Bob and Bob to Alice via 

a special kind of six-qubit entangled (SSE) state and a 

third party, Charlie. This protocol has the security that 

either both, Alice and Bob successfully exchange their 

information states or in case of failure of this exchange 

process, no-one among them gets correct information 

states. For experimental realization of this protocol, the 
authors proposed an efficient scheme to generate the SSE 

states using interaction between Λ-type three-level atoms 

and optical coherent fields. 

 

Further, the authors [27] generalized their original SQIE 

protocol to accomplish the secure exchange of the 

information states involving multi-qubits. For this purpose, 

they have generalized the SSE states. Another interesting 

point about original SQIE is the security of this protocol. 

The authors [27] have discussed the security of original 

and generalized SQIE protocols against the number of 
qubits with the controller, Charlie. They have concluded 
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that unity is the upper bound for insecurity in the quantum 

network in the original SQIE process, while one-sixteenth 

is the lower bound for insecurity in the quantum network 

in the original SQIE process. For generalized SQIE 

protocol, if Alice and Bob has to send m and n qubit states 

respectively, 2-2(m+n) is the lower bound for insecurity in 
the quantum network. 

 

In the real world, there may need of exchanging a large 

amount of information encoded in single qudit and also in 

multi qudit states. For this, in this paper, we extend the 

SQIE protocol from qubits to qudits to attain the secure 

exchange of information states encoded in single qudit and 

also in multi qudits. 

 

2. Generalization of SQIE Protocol for Two 

Unknown Single Qudit Information States 
 

In this section, we extend the original idea of SQIE for 

secure exchange of two unknown single qubit states to 
secure exchange of two unknown single qudit states 

between Alice and Bob. Let Alice want to send single 

qudit information state, 

Ad

I

A
daaa ]1.............10[ 110 −+++= −ξ ,               (1) 

to Bob and Bob want to send single qudit information 

state, 

Bd

I

B
dbbb ]1.............10[ 110 −+++= −η ,                (2) 

to Alice. This information exchange process must have 

security that both, Alice and Bob, get their required 

information states. In case of failure of this, none of them 

get the required information state. Here, 1,......,1,0 −d  

are orthogonal d-states in the computational basis of a d-
level quantum system (qudit). Superscripts I refer to 

information states. 

To complete this task, we generalize here the original 

special kind of six-qubit entangled (SSE) states [11] to 

special kind of six-qudit entangled states, which can be 

written as 
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For u, v =0, 1, …….., d-1, both }{ )(

, 11

uv

BA
E  and }{ )(

, 22

uv
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E  

form complete sets of orthogonal d
2-states in d

2-

dimensional Hilbert space, dvlvl mod)( +≡⊕ . The 

states }{
)(

, 21

uv

CC
φ  are different d

2-orthogonal states 

belonging to the computational basis ,,.........02,01,00  

)11( −⊗− dd . The states given by equation (3) form a 

set of !2d  states.  

Considering one state of the states given by equation (3) as 
entangled state, 
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we can write the initial state of composite system as 
I
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Here, qudits in modes A1, A2 are with Alice, qudits in 

modes B1, B2 are with Bob, while qudits in modes C1, C2 

are with Charlie.  

From Appendix A, we have  
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where U’s are unitary operations given by 
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for u, v =0, 1, …….., d-1. Using equations (8) and (9), 

equation (7) can be written as  
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From equation (11), it is clear that if Alice and Bob 

perform 2-qudit Bell state measurement (BSM) on their 
two qudits in modes A, A1 and B, B2 and convey their BSM 

results )( sr ′′  and )( sr ′′′′  to Charlie through classical 
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channels respectively, then Charlie measures his two 

qudits in modes C1, C2 in the computational basis 

}{ )11(,,.........02,01,00 −⊗− dd  and, depending 

on his own measurement result uv and BSM results 

received, Charlie transmits classical information to each of 

Alice and Bob. Now according to the classical information 

received from Charlie, Alice performs unitary 

transformation †*)()(
))((

22

sr

A

uv

A
UU

′′′′
 on her qudit in modes A2 

and Bob performs unitary transformation 
†*)()(

))((
11

sr

B

uv

B
UU

′′
 on her qudit in modes B2 in order to get 

the exact replicas of the required quantum information 

states. This completes the SQIE process. 

Also if any of Alice and Bob withholds the classical 

information from Charlie, then Charlie cancels the 

exchange process and none of Alice and Bob gets correct 

information state. 

 

3. Secure Quantum Information Exchange of 

the Information States Involving Arbitrary 

Number of Qudits 
 

In this section, we generalize the result of Section 2 to get 

the secure exchange of information states of arbitrary 

number of qudits between Alice and Bob. Let Alice 

require to send arbitrary m-qudit information state in 

modes ),....,,(}{ 21 mAAAA ≡ , 

}{210}{
][
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to Bob and Bob require to send arbitrary n-qudit 

information state in modes ),....,,(}{ 21 nBBBB ≡ , 
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to Alice. The security of this process is similar to the SQIE 

protocol discussed in Section 2. Here, 1−≡ mdM , 
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n ,…., ))1...()..1)(1( −−− ddd
n  of 

md ( nd )-dimensional Hilbert space. 

To complete this task, we need to generalize the special 

kind of six-qudit entangled states given by equation (3). If 

we take },max{ nmp = , then we give 2p-qudits to Charlie 

and 2p-qudits of Charlie requires d
2p terms in the 

generalized state. Now we consider the d-dimensional 

generalized Bell states (d-GBS) of 2m and 2n-qudits. For 

d-GBS of 2m-qudits encoded in the modes 

),....,,(}{ 21 mAAAA ′′′≡′  and ),....,,(}{ 21 mBBBB ′′′≡′ , one can 

have d
2m d-GBS in which one of the states can be 

expressed as 
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In order to complete the set of d2m d-GBS, we can consider 

a set of d
2m unitary operations acting on modes }{B′  in 

this state, given by  
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for ),( vu ′′ =0, 1, 2, ….., M.  Here u′  and v′  are decimal 

equivalents of d-dimensional numbers ).......( 21 muuu ′′′  and 

).......( 21 mvvv ′′′  respectively and each of αu′  and αv′  takes 
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Similarly, the d-GBS of 2n-qudits encoded in the modes 
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each unitary operation 
)( αα

α
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B
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′′  is given by equation (10) 

for αα vu ′′′′ , =0, 1, 2,…., (d-1) and u ′′  and v ′′  are decimal 

equivalents of d-dimensional numbers ).......( 21 nuuu ′′′′′′  and 

).....( 21 nvvv ′′′′′′  respectively. 

 

We have only d
2m and d

2n d-GBS of 2m and 2n qudits 

respectively and only one of these two families gives a 

family of d
2p states. If nm > , d

2m = d
2p but d

2n becomes 

smaller than d2p and if mn > , d
2n = d

2p but d
2m becomes 

smaller than d2p. This problem can be avoided by repeating 

the members of smaller family of states till d2p states are 

obtained. Thus if indices u and v takes values 0, 1, ….., 

1−pd , we can define indices )(mod
m
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The entangled state corresponding to special kind of six-

qudit entangled state (3) can be written as 
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The qudits in modes }{},{},{ AAA ′′′  belong to Alice, 

qudits in modes }{},{},{ BBB ′′′  belong to Bob and qudits 

in modes }{C  belong to Charlie.  

From Appendix B, we find that the states, 
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Now Alice performs 2m-qudit Bell state measurement 

(BSM) on her qudits in modes }{},{ AA ′  and Bob performs 

2n-qudit BSM on his qudits in modes }{},{ BB ′′ , while 

Charlie measures his qudits in modes }{C  in the 

computational basis }{
~

,......,1
~

,0
~

P . Alice and Bob, 

both, convey their BSM results )( sr ′′  and )( sr ′′′′  to 

Charlie through classical channels. Charlie, on the basis of 

BSM results obtained by Alice and Bob and his own 

measurement result, decides about the classical 

information to be conveyed to each of Alice and Bob. 

Depending on these classical information conveyed by 

Charlie, Alice and Bob perform the required unitary 

transformations on their qudits in modes }{A ′′  and }{B′  

respectively, in order to generate exact replicas of the 

required quantum information states. From equation (23), 

it is clear that if result of Charlie’s measurement is (uv), 

then Alice performs unitary transformation 
†*)(
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′′′′  and Bob performs unitary 

transformation †*)(
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}{ )( )(

sr
B

uv
B

UU
′′

′′  on their particles for the 

Bob’s BSM result )( sr ′′′′  and Alice’s BSM result )( sr ′′  

respectively. 

 

4. Conclusion 
 

We generalized the original SQIE protocol for the secure 

exchange of two single qudit information states between 
two users, Alice and Bob. We further generalized this 

result from single qudit to multi-qudits to achieve the 

secure exchange of the information states involving 

arbitrary number of qudits. 

 

In reference [27], we discussed the security of SQIE 

protocol against the number of qubits with the controller, 

Charlie. This consideration can be done for the above two 

generalized SQIE protocols discussed in Sections 2 and 3. 

For the SQIE protocol discussed in Section 2, if Alice and 

Bob have to send two unknown single qudit states, the 
number of possible quantum channels between Alice and 

Bob is 4d . Thus if Charlie gets l qudits, for l < 4, the 

probability for insecurity is ld −  and for l ≥ 4, it is 4−d . 

For the SQIE protocol discussed in Section 3, if Alice and 

Bob have to send m and n qudit states respectively, then 

the number of possible quantum channels between Alice 

and  Bob  is  )(2 nmd + .  Thus  if  Charlie  gets  l qubits, for 

l < 2(m+n),  the  probability  for  insecurity  is ld −  and for 

l ≥ 2(m+n), it is )(2 nmd +− . 
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Appendix A 
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Similarly, for the state 
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Appendix B 
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Using equations (15) and (16), equation (B.1) can be 

written as 
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where    
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and r′  and s′  are the decimal conversions of d-

dimensional numbers )......( 21 mrrr ′′′  and )......( 21 msss ′′′ . Since 
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Similarly, for the state 
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directly using equation (B.4),  
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 and r ′′  and s ′′  are the decimal forms of d-dimensional 

numbers )......( 21 nrrr ′′′′′′  and )......( 21 nsss ′′′′′′ . 

 

References 
 
[1] C. H. Bennett, H. G. Brassard, C. Crepeau, R. Jozsa, A. 

Peres and W. K. Wootters, Phys. Rev. Lett. 70, 1895 
(1993). 

[2] L. Vaidman, Phys. Rev. A 49, 1473 (1994); J. I. Cirac 
and A. S. Parkins, Phys. Rev. A 50, R4441 (1994); S. B. 
Zheng and G. C. Guo, Phys. Lett. A 232, 171 (1997), 

Phys. Rev. A 63, 04432 (2001). 
[3] X. Wang, Phys. Rev. A 64, 022302 (2001); S. J. van 

Enk and O. Hirota, Phys. Rev. A 64, 022313 (2001); H. 
Prakash, N. Chandra, R. Prakash and Shivani, Phys. 



IJCAT  International Journal of Computing and Technology, Volume 1, Issue  6, July 2014        
ISSN : 2348 - 6090 
www.IJCAT.org 

 

241 

 

Rev. A 75, 044305 (2007); J. Phys. B: At. Mol. Opt. 
Phys. 40 (2007) 1613; Int. J. Quan. Inf. 6 (2008) 1077; 
Int. J. Mod. Phys. B 23 (2009) 585; Int. J. Mod. Phys. B 
23 (2009) 2083; H. N. Phien and N. B. An, Phys. Lett. A 
372 (2008) 2825; N. B. An, Phys. Lett A 373 (2009) 

1701; M. K. Mishra and H. Prakash, J. Phys. B: At.  
Mol. Opt. Phys. 43, 185501 (2010); J. Opt. Soc. Am. B 
29 (2012) 2915. 

[4] D. Bouwmeester et al, Nature 390, 575 (1997); D. 
Boschi et al, Phys. Rev. Lett. 80, 1121 (1998). 

[5] M. A. Nielsen, E. Knill and R. Laflamme, Nature 396 
(1998) 52; I. Marcikic, H. de Riedmatten, W. Tittel, H. 
Zbinden and N. Gisin, Nature, 421, 509 (2003). 

[6] M. Riebe et al, Nature 429, 734-737 (2004); M. D. 
Barrett et al, Nature 429, 737 (2004); S. Olmschenk et 
al, Science 323, 486 (2009). 

[7] A. Karlsson and M. Bourennane, Phys. Rev. A 58, 4394 
(1998); M. Hillery, V. Buzek and A. Berthiaume, Phys. 
Rev. A 59 (1999) 1829. 

[8] B. S. Shi and A. Tomita, Phys. Lett. A 296, 161 (2002); 
J. Joo and Y.-J. Park, Phys. Lett. A 296 (2002) 161; B. 

S. Shi and A. Tomita, Phys. Lett. A 300 (2002) 324.  
[9] H. Prakash and A. K. Maurya, Opt. Commun. 284, 5024 

(2011); J. Joo, Y. J. Park, S. Oh and J. Kim, New J. of 
Phys. 5, 136 (2003); Z. L. Cao and M. Yang, Physica A 
337 132 (2004).  

[10] C. P. Yang and G. C. Guo, Chin. Phys. Lett. 17, 162 
(2000); J. Lee, H. Min, and S. D. Oh, Phys. Rev. A 66, 
052318 (2002). 

[11] G. Rigolin, Phys. Rev. A 71, 032303 (2005); F.-G. 
Deng, Phys. Rev. A 72, 036301 (2005). 

[12] Y. Yeo and W. K. Chua, Phys. Rev. Lett. 96, 060502 
(2006). 

[13] P.-X. Chen, S.-Y. Zhu and G.-C. Guo, Phys. Rev. A 74, 
032324 (2006). 

[14] H. Prakash, N. Chandra, R. Prakash and A. Dixit, Mod. 
Phys. Lett. B 21 (2007) 2019; G. Gordon and G. 
Rigolin, Phys. Rev. A 73, 042309 (2006); X. H. Zhang, 

Z. Y. Yang and P. P. Xu, Sci. in China Series G: Phys. 
Mech. Ast. 52, 1034 (2009). 

[15] C.-P. Yang, S.-I. Chu and S. Han, Phys. Rev. A 70, 
022329 (2004); Z.-J. Zhang, Phys. Lett. A 352, 55 
(2006).  

[16] Z.-X. Man, Y.-J. Xia and N. B. An, Phys. Rev. A 75, 
052306 (2007); Z.-X. Man, Y.-J. Xia and N. B. An, J. 
Phys. B: At. Mol. Opt. Phys. 40, 1767 (2007). 

[17] Y.-B. Zhan, Chin. Phys. 16 2557 (2007). 
[18] Y.-J. Tao, D.-P. Tian, M.-L. Hu and M. Qin, Chin. Phys. 

B 17, 624 (2008). 
[19] Z. Zhang, Y. Liu and D. Wang, Phys. Lett. A 372, 28 

(2007). 
[20] X.-G. Zhan, H.-M. Li, H. Ji and H.-S. Zeng, Chin. Phys. 

16 2880 (2007); H. Ji, X.-G. Zhan and H.-S. Zeng, Chin. 
Phys. Lett. 24 2724 (2007). 

[21] J. Wang, K. Hou, H Yuan and S.-H. Shi, Phys. Scr. 80, 
015004 (2009). 

[22] X.-H. Li, F.-G. Deng and H.-Y. Zhou, Chin. Phys. Lett. 
24, 1151 (2007).  

[23] P. Zhou, X.-H. Li, F.-G. Deng and H.-Y. Zhou, J. Phys. 
A: Math. Theor. 40, 13121 (2007). 

[24] J. Dong and J. F. Teng, Eur. Phys. J. D 49, 129 (2008). 
[25] T.-J. Wang, H.-Y. Zhou and F.-G. Deng, Physica A 387, 

4716 (2008).  
[26] M. K. Mishra, A. K. Maurya and H. Prakash, J. Phys. B: 

At. Mol. Opt. Phys. 44 (2011) 115504. 
[27] A. K. Maurya, M. K. Mishra and H. Prakash,  Int. J. 

Comp. Tech. 1, 183 (2014).

 


