
IJCAT  International Journal of Computing and Technology, Volume 1, Issue  6, July 2014        
ISSN : 2348 - 6090 
www.IJCAT.org 

 

319 

 

Abstract Syntax Tree Generation using Modified 

Grammar for Source Code Plagiarism Detection 

1 Resmi N.G. , 2 Soman K.P. 

 

 1 CEN, Amrita Vishwa Vidyapeetham, Coimbatore, Tamilnadu, India 

 
2 CEN, Amrita Vishwa Vidyapeetham, Coimbatore, Tamilnadu, India 

 
 

 

Abstract – Abstract Syntax Tree (AST) matching has been 

used for detecting plagiarisms in source code files by many 

researchers. ASTs are usually constructed from parse trees. The 

generation of ASTs and structure of ASTs used may however 

differ in each approach. In this paper, we propose a few 

modifications to C, C++, and Java grammars to generate ASTs.  

The ASTs generated using modified grammar are further 

modified to allow subtree matching. These ASTs are traversed 

to generate node sequences which are compared using sequence 

matching algorithms - Needleman-Wunsch algorithm and 

longest common subsequence algorithm. A comparison of 

results obtained for ASTs generated using original and modified 

grammars for C, C++, and Java languages is done which shows 

that the results are better for ASTs generated using modified 

grammar for the most common plagiarism strategies. 

 

Keywords - Abstract Syntax Tree, Source Code Plagiarism 

Detection, Modified Grammar 

1. Introduction 

Plagiarism, the practice of taking someone else’s work or 

ideas and passing them off as one’s own without proper 

acknowledgement of the original author, has become a 

serious issue in today’s world. Plagiarism has become 

very common in educational institutions. Students copy 

other students’ assignments, both text and source code, 

without any hesitation to complete their work in time or to 

complete their work in a better way. Many students 

seldom care to put their time and effort into doing the 

assignments on their own when it is far simpler and 

effortless to copy from someone else. However, it is 

necessary to differentiate the original work from 

plagiarized work. 

 

There is an alarming rise in plagiarism due to the 

widespread use of internet. Internet is an enormously 

huge repository of information which can be accessed 

easily from almost anywhere. This has made it very  

 

 

difficult to control plagiarism. Since the task of manually 

detecting plagiarism in a large document database is very 

tedious and time-consuming, efforts are continuously 

being made to automate the process. 

 

Source code plagiarism occurs when source code is copied 

and edited without proper acknowledgement of the 

original author [1]. Plagiarism in source code can occur 

by changing variable names, method names, data types, 

replacing expressions with their equivalent expressions, 

replacing one loop statement with another, replacing one 

selection statement with another, replacing procedure or 

function calls with procedure or function bodies, and so 

on [2]. 

 

A study [3] shows that structure-metric-based methods 

tend to outperform attribute-counting-based information 

retrieval or similarity detection methods. One such 

method for code similarity detection is AST matching. 

AST matching has been used for detecting plagiarisms in 

source code files by many researchers. ASTs are usually 

constructed from parse trees. The generation of ASTs and 

structure of ASTs used may however differ in each 

approach. In this paper, we propose a few modifications to 

C, C++, and Java grammars to generate ASTs. 

2. Abstract Syntax Trees 

AST is the output of the syntax analysis phase of a 

compiler. An AST is an intermediate tree representation 

of the source code. It represents the abstract syntactic 

structure of the program. Each node in the AST 

represents a construct in the source code. A terminal node 

in AST is either an identifier or a constant. A parser 

generator is required to produce ASTs. The trees 

generated by parser generators are called parse trees and 

are usually huge in size. Parse trees contain large number 

of nodes that carry no structure information. These trees 



IJCAT  International Journal of Computing and Technology, Volume 1, Issue  6, July 2014        
ISSN : 2348 - 6090 
www.IJCAT.org 

 

 

320 

 

can be reduced in size by making suitable modifications 

in the parser definition for a specific language to remove 

redundant nodes which do not add any extra information 

to the program structure. The most common nodes which 

are eliminated include nodes that represent punctuation 

marks such as semi-colons and commas. The reduced tree 

will contain only those nodes which carry useful structural 

information and hence the name Abstract Syntax Tree.  

 

Each source code file is parsed and its AST is generated. 

Once the ASTs are generated, comparison of ASTs can be 

done in different ways. Ligaarden [4] proposes an AST 

based approach to detect plagiarism in Java source code. 

The author modifies the Java grammar to obtain the 

corresponding AST. A preorder traversal is done through 

the ASTs to be compared as done in [5] to generate node 

sequences. Top Down Unordered Maximum Common 

Subtree Isomorphism (TDUMCSI) algorithm [6,7] along 

with sequence matching algorithms – Needleman-Wunsch 

(NW) algorithm and Longest Common Subsequence 

(LCS) algorithm, are then used to compare the node 

sequences and find matches.  

 

We have earlier extended Ligaarden’s approach to detect 

plagiarisms in C and C++ [8] by making similar 

modifications in the C and C++ grammars as done in [4] 

for Java grammar. We have now improved upon 

Ligaarden’s modified Java grammar to generate ASTs 

that would give better results on comparison. 

3. AST Generation using Modified Grammars 

Parse trees are huge because most of the parsers create 

nodes for all the non-terminals in the grammar. A simple 

method to reduce the size of a parse tree and produce an 

AST is to retain all the terminal nodes and only those 

non-terminal nodes which have more than one child. 

Further reduction in size of parse trees can be done by 

modifying the grammars for each programming language. 

3.1 Modifying C Grammar 

ASTs generated using original C grammars do not allow 

proper comparison between subtrees of different iteration 

statements or between subtrees of different selection 

statements. The C grammar is modified so as to 

incorporate the changes required in order to allow 

comparison between subtrees of different iteration or 

selection statements.  

 

3.1.1. Original C Grammar 

Statement() : ( LOOKAHEAD(2) LabeledStatement()  

| ExpressionStatement() | CompoundStatement()  

| SelectionStatement() | IterationStatement()  

| JumpStatement() )  

LabeledStatement() : (<IDENTIFIER> ":" Statement()  

|  <CASE> ConstantExpression() ":" Statement()  

|  <DFLT> ":" Statement())  

CompoundStatement() : "{" [LOOKAHEAD  

(DeclarationList()) DeclarationList() ]  

[ StatementList() ] "}" 

StatementList() : (Statement())+ 

SelectionStatement() : <IF> "(" Expression() ")"  

Statement() [ LOOKAHEAD (2) <ELSE> 

Statement() ]  

| <SWITCH> "(" Expression() ")" Statement() ) 

IterationStatement(): <WHILE> "(" Expression() ")"  

Statement()  

| <DO> Statement() <WHILE> "(" Expression() 

")" ";"  

| <FOR> "(" [ Expression() ] ";" [ Expression() ] 

";" [ Expression() ] ")" Statement() ) 

 

3.1.2. Modified C Grammar 
 

A new rule StatementBlock is added and the rules for 

IterationStatement and SelectionStatement are redefined 

using StatementBlock. The AST generated with this 

modified grammar will always have StatementBlock as 

root of the subtree which corresponds to the body of 

iteration or selection statement. The rule for 

LabeledStatement is also redefined. 

 

The subtree for a StatementBlock either corresponds to a 

single statement or a compound statement. If the iteration 

statement or selection statement has a single statement as 

its body then the node label StatementBlock in the AST 

generated is changed to CompoundStatement. If the 

iteration statement or selection statement has a compound 

statement as its body then the node StatementBlock is 

removed.  

 

The rule for switch statement is changed so that subtree 

rooted at CaseBlock corresponding to each case block 

with zero, one, or more statements is separated from the 

other. The root of each of these subtrees corresponding to 

each of the case blocks in switch statement is changed 

from CaseBlock to CompoundStatement to allow subtree 

matching. In the modified AST, the iteration statements 

for, while and do-while or the selection statement if-else 

will always have CompoundStatement as root of its 

subtree which corresponds to the body of iteration or if-

else statement and the case blocks in switch will also be 

rooted at CompoundStatement. This modification allows 



IJCAT  International Journal of Computing and Technology, Volume 1, Issue  6, July 2014        
ISSN : 2348 - 6090 
www.IJCAT.org 

 

 

321 

 

the subtrees of iteration or selection statement with and 

without block to be matched.  

 

StatementBlock() : Statement() 

Statement():( LOOKAHEAD(2) LabeledStatement()  

| ExpressionStatement() | CompoundStatement()  

| SelectionStatement() | IterationStatement()  

| JumpStatement() ) 

LabeledStatement() : <IDENTIFIER> ":" Statement()  

CompoundStatement():"{" [LOOKAHEAD  

(DeclarationList()) DeclarationList() ]  

[ (Statement())+ ] "}" 

SelectionStatement() : ( <IF> "(" Expression() ")"  

StatementBlock() [ LOOKAHEAD(2) <ELSE>  

StatementBlock() ]  

| <SWITCH> "(" Expression() ")" "{" ( 

CaseLabel() CaseBlock() )* "}") 

CaseLabel() : (<CASE> ConstantExpression() ":"  

| <DFLT> ":" ) 

CaseBlock():(Statement())* 

IterationStatement() : ( <WHILE> "(" Expression() ")"  

StatementBlock()  

|  <DO> StatementBlock() <WHILE> "(" 

Expression() ")" ";"  

| <FOR> "(" [ Expression() ] ";" [ Expression() ]  

  ";" [ Expression() ] ")" StatementBlock() ) 

3.2 Modifying C++ Grammar 

AST generation using original C++ grammar also faces 

the same problem as with C grammar. The modifications 

to C++ grammar are hence similar to that of C grammar. 

 

3.2.1. Original C++ Grammar 

 

statement_list() :(LOOKAHEAD(statement())   

statement())+ 

statement() : LOOKAHEAD(declaration())  declaration()    

| LOOKAHEAD(expression()";") expression() ;" 

    | compound_statement() | selection_statement() 

    | jump_statement() | ";" | try_block()  

| throw_statement()| LOOKAHEAD(2)  

labeled_statement()| iteration_statement() 

labeled_statement():<ID> ":" statement() 

   | "case" constant_expression() ":" statement() 

    | "default"  ":" statement() 

compound_statement() :    "{" (statement_list())?  "}" 

selection_statement() : "if" "(" expression() ")" 

statement()         

               (LOOKAHEAD(2) "else" statement())? 

   | "switch" "(" expression() ")" statement() 

iteration_statement() : "while" "(" expression() ")"  

statement() 

| "do" statement() "while" "(" expression() ")" ";" 

   | "for" "("(LOOKAHEAD(3) declaration() |                

expression() ";" | ";") ( expression() )? ";" 

( expression() )? ")" statement() 

Consider code fragments 1 and 2. Figure 1 shows the 

ASTs generated using original C++ grammar for the code 

fragments. 

 

 

 

Fig. 1  ASTs generated using original C++ grammar for code fragment 1 – 

if without block and code fragment 2 – if with block. 

Fragment 1 (if without 

block) 

Fragment 2 (if with 

block) 

if (ch==1) 

    cout<<"one"; 

else  

     cout<<"wrong 

choice!"; 

if (ch==1) 

 {   cout<<"one";} 

else    

{ 

cout<<"wrong choice!"; 

} 



IJCAT  International Journal of Computing and Technology, Volume 1, Issue  6, July 2014        
ISSN : 2348 - 6090 
www.IJCAT.org 

 

 

322 

 

3.2.2. Modified C++ Grammar 
 

The modification done to C++ grammar is similar to that 

done to C grammar. A new rule statement_block is added 

and the rules for iteration_statement and 

selection_statement are redefined using statement_block. 

The AST generated with this modified grammar will 

always have statement_block as root of the subtree which 

corresponds to the body of iteration or selection statement. 

The rule for labeled_statement is also redefined. 

 

The subtree for a statement_block either corresponds to a 

single statement or a compound statement. If the iteration 

statement or selection statement has a single statement as 

its body then the node label statement_block in the AST 

generated is changed to compound_statement. If the 

iteration statement or selection statement has a compound 

statement as its body then the node statement_block is 

removed. 

 

The rule for switch statement is changed so that subtree 

rooted at case_block corresponding to each case block 

with zero, one, or more statements is separated from the 

other. The root of each of these subtrees corresponding to 

each of the case blocks in switch statement is changed 

from case_block to compound_statement to allow subtree 

matching. In the modified AST, the iteration statements 

for, while and do-while or the selection statement if-else 

will always have compound_statement as root of its 

subtree which corresponds to the body of iteration or if-

else statement and the case blocks in switch will also be 

rooted at compound_statement. This modification allows 

the subtrees of iteration or selection statement with and 

without block to be matched.  

 

statement_block():statement() 

statement() :  LOOKAHEAD( declaration()) declaration() 

    | LOOKAHEAD(expression() ";") expression()";" 

 | compound_statement() | iteration_statement() 

   | LOOKAHEAD(2) labeled_statement() 

    | selection_statement() | jump_statement() | ";" 

    | try_block() | throw_statement()   

labeled_statement() :<ID> ":" statement()  

compound_statement() :"{"(statement())* "}" 

iteration_statement() :"while" "(" expression() ")"  

statement_block() 

    | "do" statement_block() "while" "(" expression()  

")" ";"  

| "for" "("(LOOKAHEAD(3) declaration() | 

expression() ";" | ";") (expression())? ";" 

(expression())? ")" statement_block() 

selection_statement() : "if" "(" expression() ")"  

statement_block() (LOOKAHEAD(2) "else" 

statement_block())? 

   | "switch" "(" expression() ")" "{" ( case_label()  

  case_block() )*  "}" 

case_label():"case" constant_expression() ":" | "default" 

":" 

case_block():( statement() )* 

Figure 2 shows the AST generated using modified C++ 

grammar for code fragment 1 – if without block. It also 

shows the same AST obtained after changing 

statement_block to compound_statement. The resultant 

modified AST is same as that of if with block obtained 

using modified grammar thereby allowing a comparison 

between the body of if with and without blocks. 

 

Fig. 2  AST generated using modified C++ grammar and AST modified by 

changing statement_block to compound_statement for code fragment 1 – if 

without block 



IJCAT  International Journal of Computing and Technology, Volume 1, Issue  6, July 2014        
ISSN : 2348 - 6090 
www.IJCAT.org 

 

 

323 

 

3.3 Modifying Java Grammar 

3.3.1. Original Java Grammar 
 

Statement():LOOKAHEAD(2)  LabeledStatement() 

  | AssertStatement() | Block() | EmptyStatement() 

| StatementExpression() ";" | SwitchStatement() 

| IfStatement() | WhileStatement() | 

DoStatement() 

  | ForStatement() | BreakStatement()  

  | ContinueStatement() | ReturnStatement() 

  | ThrowStatement() | SynchronizedStatement() 

| TryStatement() 

SwitchStatement():"switch" "(" Expression() ")" "{" (  

SwitchLabel() SwitchLabelBlock() )* "}" 

SwitchLabel():"case" Expression() ":" | "default" ":" 

SwitchLabelBlock():( BlockStatement() )* 

IfStatement():"if" "(" Expression() ")" Statement()  

  [LOOKAHEAD(1) "else" Statement() ] 

WhileStatement() :"while" "(" Expression() ")" 

Statement() 

DoStatement():"do" Statement() "while" "(" Expression()  

")" ";" 

ForStatement():"for""("(LOOKAHEAD(Type()  

<IDENTIFIER> ":")Type() <IDENTIFIER> ":" 

Expression() | [ ForInit() ]";" [ Expression() ] ";" 

[ ForUpdate() ] ) ")" Statement() 

 

3.3.2. Modified Java Grammar 

 

Ligaarden [4] makes a distinction between the different 

types and between the literals of different types on 

modifying the grammar. Making a type distinction and 

literal distinction will only help to discriminate the files 

rather than finding their similarity. It is therefore 

necessary to retain the original grammar rules for 

primitive types and literals to identify plagiarisms 

involving changing identifiers and constants, and 

changing data types effectively. 

 

In the original Java1.5 grammar, there are separate rules 

for the selection statements if and switch. In case of 

different rules for the selection statements, the 

comparison stops at nodes labeled IfStatement and 

SwitchStatement since the labels do not match. Similarly, 

there are separate rules for for, while, and do-while. The 

comparison stops at nodes labeled ForStatement, 

WhileStatement, and DoStatement since the labels do not 

match. Hence, the rules are modified so that the separate 

rules for if and switch are combined to form a new rule 

SelectionStatement and the separate rules for for, while, 

and do-while are combined to form a new rule 

IterationStatement. 

 

The modification done to C and C++ grammar is also 

done to Java grammar. A new rule StatementBlock is 

added and the rules for IterationStatement and 

SelectionStatement are redefined using StatementBlock. 

The AST generated with this modified grammar will 

always have StatementBlock as root of the subtree which 

corresponds to the body of iteration or selection statement.  

 

The subtree for a StatementBlock either corresponds to a 

single statement or a compound statement. If the iteration 

statement or selection statement has a single statement as 

its body then the node label StatementBlock in the AST 

generated is changed to CompoundStatement. If the 

iteration statement or selection statement has a compound 

statement as its body then the node StatementBlock is 

removed.  

 

The rule for switch statement is changed so that subtree 

rooted at CaseBlock corresponding to each case block 

with zero, one, or more statements is separated from the 

other. The root of each of these subtrees corresponding to 

each of the case blocks in switch statement is changed 

from CaseBlock to CompoundStatement to allow subtree 

matching. In the modified AST, the iteration statements 

for, while and do-while or the selection statement if-else 

will always have CompoundStatement as root of its 

subtree which corresponds to the body of iteration or if-

else statement and the case blocks in switch will also be 

rooted at CompoundStatement. This modification allows 

the subtrees of iteration or selection statement with and 

without block to be matched.  

 

StatementBlock() :Statement() 

Statement():LOOKAHEAD(2)  LabeledStatement() 

  | AssertStatement() | Block() | EmptyStatement() 

| StatementExpression() ";" | IterationStatement() 

| SelectionStatement() | BreakStatement()  

  | ContinueStatement() | ReturnStatement() 

  | ThrowStatement() | SynchronizedStatement() 

| TryStatement() 

SelectionStatement():"if" "(" Expression() ")"  

StatementBlock()[LOOKAHEAD(1)  

"else" StatementBlock() ] 

  | "switch" "(" Expression() ")" "{" (CaseLabel()  

CaseBlock() )* "}" 

CaseLabel():"case" Expression() ":" |  "default" ":" 

CaseBlock(): ( BlockStatement() )* 

IterationStatement():"while" "(" Expression() ")"  

StatementBlock 

 | "do" StatemenBlock() "while" "(" Expression()  

")" ";" 



IJCAT  International Journal of Computing and Technology, Volume 1, Issue  6, July 2014        
ISSN : 2348 - 6090 
www.IJCAT.org 

 

 

324 

 

| "for" "(" (LOOKAHEAD(Type() 

<IDENTIFIER> ":") Type() <IDENTIFIER> ":" 

Expression() | [ ForInit() ]  ";" [ 

Expression() ] ";" [ ForUpdate() ] ) ")" 

StatementBlock() 

 

Consider a code fragment: if with block 

if (ch==1) 

{  

     System.out.println("one");  

} 

else 

{  

     System.out.println("wrong choice!"); 

} 
 
Figure 3 shows the AST generated using original and 

modified grammars for the code fragment – if with block. 

There is no separate rule for if in modified grammar so as 

to allow comparison between subtrees of different 

selection statements. 

 

 

Fig. 3  ASTs generated using original and modified Java grammar for code 

fragment – if with block. 

3. Results and Discussions 

The similarity scores obtained on applying LCS and NW 

algorithms on ASTs generated and modified using 

original and modified C, C++, and Java grammars for the 

common plagiarism strategies are given in Tables 1, 2, 

and 3. 

Table 1:. Similarity Scores Obtained on Applying LCS and NW Algorithms 

on ASTs Generated using Original and Modified C Grammar for the 

Common Plagiarism Strategies 

Plagiarism Strategy 

C Modified C 

NW LCS NW LCS 

Changing identifiers 100 100 100 100 

Changing data types 100 100 100 100 

Changing the order of 

operands in expressions  

100 100 100 100 

Changing the order of 

independent code  

100 100 100 100 

Replacing an expression with 

an equivalent expression 

83.3 83.3 81.8 81.8 

Replacing one loop statement 

with another: a) for without 

block – for with block 

72.7 72.7 100 100 

b) while without block – 

while with block 

62.2 62.2 88.4 88.4 

c) for without block – while 

without block 

74.4 74.4 74.4 74.4 

d) for without block – while 

with block 

50 50 76.2 76.2 

 e) for with block – while 

without block 

48.9 48.9 74.4 74.4 

f) for with block – while with 

block 

78.3 78.3 76.2 76.2 

g) do-while – for without 

block 

50 50 76.2 76.2 

h) do-while – for with block 78.3 78.3 76.3 76.3 

i) do-while – while without 

block 

62.2 62.2 88.4 88.4 

j) do-while – while with block 100 100 100 100 

Replacing one selection 

statement with another: a) if 

without block – if with block 

57.9 57.9 100 100 

b) if without block – switch 43.2 43.2 81.1 81.1 

 c) if with block – switch 63.4 63.4 81.1 81.1 

Replacing a statement block 

with a function call 

56.4 56.4 56 56 

Table 2: Similarity Scores Obtained on Applying LCS and NW Algorithms 

on ASTs Generated using Original and Modified C++ Grammar for the 

Common Plagiarism Strategies 

Plagiarism Strategy 

C++ 
Modified 

C++ 

NW LCS NW LCS 

Changing identifiers 100 100 100 100 



IJCAT  International Journal of Computing and Technology, Volume 1, Issue  6, July 2014        
ISSN : 2348 - 6090 
www.IJCAT.org 

 

 

325 

 

Changing data types 100 100 100 100 

Changing the order of 

operands in expressions  

100 100 100 100 

Changing the order of 

independent code  

81.5 100 80.8 100 

Replacing an expression with 

an equivalent expression 

83.3 83.3 81.8 81.8 

Replacing one loop statement 

with another: a) for without 

block – for with block 

80 80 100 100 

b) while without block – while 

with block 

68.3 68.3 87.2 87.2 

c) for without block – while 

without block 

76.9 76.9 76.9 76.9 

d) for without block – while 

with block 

60 60 79 79 

 e) for with block – while 

without block 

58.5 58.5 76.9 76.9 

f) for with block – while with 

block 

81 81 79 79 

g) do-while – for without 

block 

60 60 79 79 

h) do-while – for with block 81 81 79 79 

i) do-while – while without 

block 

68.3 68.3 87.2 87.2 

j) do-while – while with block 100 100 100 100 

Replacing one selection 

statement with another: a) if 

without block – if with block 

60 60 100 100 

b) if without block – switch 46.2 46.2 82.1 82.1 

 c) if with block – switch 65.1 65.1 82.1 82.1 

Replacing a statement block 

with a function call 

48.8 48.8 48.1 48.1 

Table 3: Similarity Scores Obtained on Applying LCS and NW Algorithms 

on ASTs Generated using Original and Modified C++ Grammar for the 

Common Plagiarism Strategies 

Plagiarism Strategy 

Java 
Modified 

Java 

NW LCS NW LCS 

Changing identifiers 100 100 100 100 

Changing data types 100 100 100 100 

Changing the order of 

operands in expressions  

100 95.4 100 100 

Changing the order of 

independent code  

90.9 75.8 90.9 100 

Replacing an expression with 

an equivalent expression 

89.5 89.5 89.5 89.5 

Replacing one loop statement 

with another: a) for without 

block – for with block 

86.8 86.8 100 100 

b) while without block – 

while with block 

84.6 84.6 98.1 98.1 

c) for without block – while 

without block 

54.9 54.9 83.0 83.0 

d) for without block – while 

with block 

52.8 52.8 81.5 81.5 

 e) for with block – while 

without block 

53.9 53.9 83.0 83.0 

f) for with block – while with 

block 

51.9 66.7 81.5 81.5 

g) do-while – for without 

block 

52.8 52.8 81.5 81.5 

h) do-while– for with block 51.9 66.7 81.5 81.5 

i) do-while – while without 

block 

67.9 83.0 98.1 98.1 

j) do-while – while with 

block 

66.7 85.2 100 100 

Replacing one selection 

statement with another: a) if 

without block – if with block 

63.2 52.6 100 100 

b) if without block – switch 50 50 85.2 85.2 

 c) if with block – switch 54.9 54.9 85.2 85.2 

Replacing a statement block 

with a function call 

61 61 61 61 

 

A comparison of results obtained for ASTs generated 

using original and modified grammars for C, C++, and 

Java languages shows that the results are better for ASTs 

generated using modified grammar for the most common 

plagiarism strategies. 

4. Conclusions 

The ASTs generated using modified grammars were 

found to be more effective than those with original 

grammar for source code plagiarism detection. The results 

of AST matching are found to be highly reliable since 

they take into account the structural information of the 

programs. AST based approach proved to be very efficient 

in terms of similarity detection, but for a huge program 

database the runtime was found to be very high. 
 

References 
 

[1]  G. Cosma, “An Approach to Source-Code Plagiarism 

Detection and Investigation Using Latent Semantic 

Analysis”, Ph.D. Thesis, University of Warwick, 2008.  

[2]  G.  Whale, “Software Metrics and Plagiarism 

Detection”, Journal of Systems and Software, 13, 1990, 

131-138. 

[3]  K.L. Verco and M.J. Wise, “Software for Detecting 

Suspected Plagiarism: Comparing Structure and 

Attribute-Counting Systems”, First Australian 

Conference on Computer Science Education, Sydney, 

Australia, July 3-5, 1996. 

[4]  O.S. Ligaarden, “Detection of Plagiarism in Computer 



IJCAT  International Journal of Computing and Technology, Volume 1, Issue  6, July 2014        
ISSN : 2348 - 6090 
www.IJCAT.org 

 

 

326 

 

Programming Using Abstract Syntax Trees”, Master 

Thesis, University of Oslo, 2007. 

[5]  R. Koschke, R. Falke and P. Frenzel, “Clone Detection 

Using Abstract Syntax Suffix Trees”, 13th WCRE 2006, 

253-262. 

[6]  G. Valiente, “Simple and Efficient Tree Pattern 

Matching”, Technical Report LSI-00-72-R, Technical 

University of Catalonia, 2000. 

[7]  G. Valiente, Algorithms on Trees and Graphs, Springer-

Verlag, Berlin, 2002. 

[8]  N. G. Resmi and K. P. Soman, “Abstract Syntax Trees 

with Latent Semantic Indexing for Source Code 

Plagiarism Detection”, International Journal of Advanced 

Research in Computer Science, 3(3), 2012, 546-550. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N. G. Resmi The author secured her master’s degree in 
Computational Engineering and Networking from Amrita Vishwa 
Vidyapeetham (2008). She is currently a doctoral student there. The 
author has also worked as Assistant Professor in Sahrdaya College 
of Engineering and Technology. Her current research interests 
include compilers, wavelet theory, kernel methods and linear algebra. 
 
K. P. Soman The author secured his Ph.D. from IIT Kharagpur and 
was scientific officer in the Reliability Engineering Centre, IIT 
Kharagpur. The author currently serves as Head and Professor at 
Amrita Center for Computational Engineering and Networking (CEN), 
Coimbatore. He has been in the research field for more than 25 years 
and his current interests are Software Defined Radio, Statistical 
Digital Signal Processing (DSP) on Field Programmable Gate Array 
(FPGA), Wireless Sensor Networks, High Performance Computing, 
Machine learning using Support Vector Machines, Signal Processing, 
and Wavelets & Fractals. 
 


