
IJCAT International Journal of Computing and Technology, Volume 1, Issue 4, May 2014
ISSN : 2348 - 6090
www.IJCAT.org

10

An Efficient Cache Management using Adaptive

Buffer Mechanism in MANET

1 Rukmini Bhat B.

 1 Computer Science & Engineering Department, VTU, Company

SDIT, Mangalore, Karnataka. India

Abstract- In a mobile environment, as a mobile node moves

from one point of attachment to another during an ongoing

application it is subjected to packet loss due to network and

storage capacity. Such packet loss affects the quality of

ongoing communication session. Ability to control the buffer

dynamically provides a reasonable trade-off between delay

and packet loss, which is within the threshold limit for real-

time communications. So first demonstrate that the default

use of static buffers in mobile environment leads to either

undesirable channel under utilization or unnecessary high

delays, which motivates the use of dynamic buffer sizing. We

propose an adaptive sizing algorithm which is demonstrated

to be able to maintain high throughput efficiency whilst

achieving low delay. We evaluate our system using NS2

simulation, and the results demonstrate the feasibility and

efficiency of our proposed scheme in terms of consistency

ratio, delay, and overhead.

Keywords- MANETs, data caching, buffering, packet loss,

TTL.

1. Introduction

Mobile Ad hoc Network (MANET) is a network with

dynamic topology and mobile nodes. Due to the

dynamic nature of network, there is no central control.

Hence, nodes communicate with other nodes through

intermediate nodes. The intermediate nodes are normal

nodes in the same network and assume the

responsibility of forwarding packets on the route from

source to destination.

In mobile environments, data caching is essential

because it increases the ability of mobile devices to

access desired data, and improves overall system

performance. The major issue that faces client cache

management concerns the maintenance of data

consistency between the cache client and the data

source. All cache consistency algorithms [3] seek to

increase the probability of serving from the cache data

items that are identical to those on the server.

However, achieving strong consistency, where cached

items are identical to those on the server, requires costly

communications with the server to validate (renew)

cached items, considering the resource limited mobile

devices and the wireless environments they operate in.

Fig.1 Mobile Nodes

We proposed distributed cache invalidation mechanism

(DCIM) [2] is client based approach (pull-based

algorithm) that implements adaptive time to live (TTL),

piggybacking, and prefetching, provides near strong

consistency capabilities. This work is implemented on

top of the COACS caching architecture in order to

maintain the consistency between the server and the

cache node. Cache node using adaptive buffering

technique so, we can decrease the dropping of packets

MANET and its leads to an efficient packet routing in

mobile environment.

2. Literature Review

2.1 Cache Invalidation Scheme

In a mobile computing system, in order to reduce the

data access delay, some data items are cached at the

client machines. Cache invalidation scheme [4] called

Invalidation by absolute Validity Interval(IAVI) for

mobile computing system. In IAVI, we define an

absolute validity interval(AVI), for each data item based

on its dynamic property such as the update interval. A

mobile client can verify the validity of a cached item by

comparing the last update time and its AVI. A cached

IJCAT International Journal of Computing and Technology, Volume 1, Issue 4, May 2014
ISSN : 2348 - 6090
www.IJCAT.org

11

item is invalidated if the current time is greater than the

last updated time plus its AVI. With this self-

invalidation mechanism, the IAVI scheme uses the

invalidation report to inform the mobile clients about

changes in AVIs rather than the update event of the

data items. As a result ,the size of the invalidation

report can be reduced significantly.

2.2 Buffering Techniques

Several buffering techniques are available for efficient

packet routing in mobile environment. In static

buffering we will declare the buffer space for the data

items. If we declare more space than we need, we waste

space. If we declare less space than we need, we won’t

get desired packets. To avoid the drop packets in mobile

environment we are using dynamic buffer techniques

[5] and [6]. In this buffer size can grow and shrink to fit

changing data requirements. It means when additional

buffer requires can access from other node or can de-

allocate whenever we are done with them, because of

this reason probability of dropping packets will

decreases.

2.3 Time-To- Live

Many TTL approaches [7] are introduced for MANETs

and several mechanisms are introduce for assigning

TTL values. First mechanism is adapted by the last

update time. This approach is used in dynamic

environments. Second approach is the value is

calculated by the difference between the query time and

last update time. This approach does not give the

absolute solution. Finally the TTL value is computed by

TCP orientation. Assigning the TTL value by two ways,

one is to fix TTL that mean the constant TTL value is

assign for a set of item in the cache. Another is adaptive

TTL that provide higher consistency along with lower

traffic. TTL is a data which stores in cache will be

expired if it has not used within threshold time since

last update. It provides simplicity, good performance

and flexibility to assign TTL values.

2.4 Cooperative and Adaptive Caching System

The idea is to create a cooperative and adaptive caching

system that minimizes delay and maximizes the

likelihood of finding data that is cached in the ad hoc

network, all without inducing excessively large traffic at

the nodes. In COACS [1] System , the RN request the

particular data item to the nearby QD, the QD

maintains the table consist of the id of data item and the

address of the cache node which contain the desired

data item, if the requested data item is in the particular

query directory then it forwards the request to the cache

node that contains the desired data item and CN replies

to the RN. If the request is not in the QD then it

forwards to the nearby QD , These is done by using the

MDPF algorithm. The requested data item is not in any

of the QD then the message is forwarded to the server

and the server reply to the RN directly shown in Fig.2.

Fig.2: Data Flow

3. System Methodologies

3.1 Existing System Design

In the previous paper introduce server based scheme

(SSUM)[8]. It is the process of updating the cache data

item by the data source. Here the request gets from the

requestor directly to the data source; the data source

does not maintain the information about the client

nodes and it forwards the request to the all the cache

nodes and the nodes update the similar data to the data

source. Because of static buffer data source get overhead

processing and it leads to network delay and packet

loss.

3.2 Proposed System Design

Distributed cache invalidation process, it’s totally a

client based scheme. Here the Query directory collects

all the cache node information along with address in

it’s the group, and the cache nodes caches the query

from the request nodes. In this paper exposes the

algorithm called pull-based that implements

prefetching, piggybacks [12] and TTL values [7] and

[9]. Each data items in the cache nodes has the TTL

values which the value same to the data source then the

data item is unexpired. Suppose the data item is not

similar to data source then it treated as expired. So the

caches ask to the data source for updating and prefetch

[11] the desired data item from the data source. Cache

nodes contains the already asked frequents data. To

avoid the overhead processing in data source we

propose adaptive buffering technique for Cache Nodes

that are present in DCIM system.

Here Cache Node containing previously requested items

and their TTL values along with that dynamic buffer.

This buffer size can grow and shrink to fit changing

data requirements. So we can avoid the packets

dropping in mobile environment.

IJCAT International Journal of Computing and Technology, Volume 1, Issue 4, May 2014
ISSN : 2348 - 6090
www.IJCAT.org

12

4. Architecture and Operations

This section describes system model and interaction

between different components.

4.1 System Model

The system consists of a MANET of wireless mobile

nodes interested in data generated at an external data

source connected to the MANET using a wired network

(e.g., internet) via Wi-Fi Access Points (APs). Nodes

that have direct wireless connectivity to an AP act as

gateways, enabling other nodes to communicate with

the data source using multihop communications showed

in fig. 3.

Fig.3: System Architecture

The server acts as the vital source of information to

which requests are made to receive and update data. In

the above figure it is evident that one of mobile nodes

has a weaker connectivity range. Hence in order to

overcome the delay and data loss, it forwards the

requests through the intermediate node query directory

and cache node. Cache node maintains the frequently

used data for a temporary memory instance while the

query directory maintains the information about those

caches maintained in the cache nodes and efficiently

directs them to the requesting node. Access point

determines the connectivity range of the mobile node.

We list the messages which we are using in DCIM (see

Table 1).Fig. 4 shows the basic interactions of DCIM

through a scenario in which RN gives the request to the

nearest QD’s. If this QD finds the query in its cache, it

forwards the request to the CN caching the item, which,

in turn, sends the item to the requesting node (RN).

Otherwise, it forwards it to its nearest QD [1], which

has not received the request yet. If the request traverses

all QD’s without being found, a miss occurs and it gets

forwarded to the server which sends the data item to the

RN. The server autonomously sends data updates to the

CNs, meaning that it has to keep track of which CNs

cache which data items. This can be done using a

simple table in which an entry consists of the id of a

data item (or query) and the address of the CN that

Table 1: Packets used in DCIM

Fig. 4. Interactions between nodes in a DCIM system

caches the data. If any request to the CN caching the

item, which, in turn, sends the item to the requesting

node (RN).

Algorithm 1: interaction between three nodes

(RN,QD and CN)

cache update()

1. RN send DRP msg to nearest QD

2. QD checks for data

3. if data is present then

4. DRP msg forward to CN (go to step 10)

5. else if

IJCAT International Journal of Computing and Technology, Volume 1, Issue 4, May 2014
ISSN : 2348 - 6090
www.IJCAT.org

13

6. Forward to nearest QD

7. else

8. Fetch the data from sever (go to step 15)

9. end if

10. CN receives the DRP request from the QD and

checks for the data

11. if the data is present

Check buffer space in CN call

Adaptive buffer()

12 else

13 Fetch the data from server

 (go to step 15)

14 end if

 15 return (DERP response to RN)

4.2 Server Operation

When the server receives the CURP message from the

CN. The server checks all the items are compared to the

last update time. If the item has not changed then it is

treated as a valid and sent SVRP is send to the CN.

Suppose the data item have not similar to the server

then it called as invalidation. So server send SUPR

message to the CN fig 3. The server inform about this

through the SVRP message. In this approach is client

based, the processing at the server is minimal.

Fig. 5. Decision flow at the server

4.3 QD Operation

This section describes how the QD is assigned in this

system depending on the storage capacity. Here the

number of QDs are bounded in this based on the limits

such as lower and upper limits, where the QD elected

[2] it will not yield reduction in average QD load. The

upper limits, corresponds to a delay threshold. First we

elected the maximum storage capacity node as QD and

its store all the address of the cache node information.

After it stores more CN information so the capacity is

reduced [7]. Using the minimum distance packet

forwarding concept it is easy to reach required

destination and it provides efficient way to maintain the

system performance.

4.4 CN Operation

The CN store the cached queries along with their

responses plus their IDs. A CN maintain all the

information in two tables that are cache information

table [2] which stores responses of the queries are

locally cached and Query information table that stores

query specific data. The CN checks for expired data

items, validation request, and request updates. CN

collects the frequently asked data and the received the

request get from the QD. CN assign TTL values for

each data items and the value with the query if it is

matched it as VALID response to the RN. Suppose the

data does not matches then it as INVALID. Then the

CN piggyback to server and collect the valid data item.

The CN prefetch the item from the server.

These CN’s uses the dynamic buffering technique. In

the initialization phase, an equal buffer space is

allocated to all cache nodes which enable every

neighbor to have its share in the buffer. In addition to

that, the occurrence of a request, the allocation is

dynamically adjusted according to instantaneous share

of neighbor’s cache nodes buffer. More importantly, we

also put limits on maximum and minimum buffer space

a single node can occupy. In this way, we can decrease

the dropping of packets MANET and its leads to an

efficient packet routing in mobile environment.

4.4.1 The Algorithm

Our objective is to simultaneously achieve both high

throughput efficiency and low delay. Intuitively, in

order to ensure efficient link utilization, the buffer

should not lie empty for too long a time. Increasing the

buffer size tends to reduce the link idle time. However,

to ensure low delays, the buffer should be as short as

possible and a trade-off therefore exists. This intuition

suggests the following approach. We observe the buffer

occupancy over an interval of time. If the buffer rarely

empties, we decrease the buffer size to avoid high delay.

Conversely, if the buffer is empty for too long a period,

we increase the buffer size to maintain high throughput.

Algorithm 2: The adaptive buffer tuning algorithm.

Adaptive buffer()

1. Set the initial queue limit, the maximum buffer

limit qmax and the minimum buffer limit qmin.

2. Set the increase step size a and the decrease step

size b.

3. for every t seconds do

4. Measure the idle time ti.

5. qnew = q + ati − b(t − ti).

6. if qnew < qmax then

7. if qnew < qmin then

IJCAT International Journal of Computing and Technology, Volume 1, Issue 4, May 2014
ISSN : 2348 - 6090
www.IJCAT.org

14

8. q� qmin

9. else

10. q � qnew

11. end if

12. else

13. q� qmax

14. end if

15. end for

5. Simulation Setup

In this section, we are going to reduce the traffic, delay

and probability of dropping packet by introducing the

concept of the dynamic buffer in cache node. We use

the NS2 software to implement the dynamic buffering

scheme in the DCIM System.

5.1 Simulation Parameter

A single database server is connected to the wireless

network through a fixed access point, while the mobile

nodes are randomly distributed. The simulation area

was set to 670 x 670m2, populated with 8 nodes that

were randomly distributed. Propagation was according

to the two-ray model, and the node’s bit rate was set to

2 Mbps. Mobility was based on the random waypoint

model, with a maximum speed of 2 m/s (Table 2).

5.2 Result

The graphs are plotted by simulation time versus

number of cache hits. Fig. 6 clearly demonstrates that

the cache hit without adaptive buffer more is observer

in the experimentation i.e. due to the static buffer space.

Here in Fig. 7, the cache are deleted frequently due to

the size constraints. Therefore proposed system uses

dynamic size buffer based on the lifetime and frequency

of the data. Hence the cache hits at server is observed

less.

Table 2: Simulation Parameters

Simulation Parameter Default value

Network size 670 x 670m2

Node transmission range 100m

number of nodes 8

routing protocol DSDV

max packet 50

Size of data item 10KB

Fig.6: Cache hits without adaptive buffer

Fig.7: Cache hits with adaptive buffer

6. Conclusion

The proposed scheme can minimize dropping of packets

and query delay in the distributed cache invalidation

mechanism and reduces the network traffic. In addition,

we have adopted the adaptive buffering technique in

Cache Node to avoid the dropping of packets in mobile

environment , thus improving the performance of the

system and minimizes the contention in the network.

The extensive results have demonstrated that, in

comparison with the existing methods, our proposed

scheme is more effective and efficient in accessing the

data, reducing response time and improving the

Performance of the system.

For future work, we can investigate more sophisticated

TTL algorithms for life time of the data and selection

of Query directories are dynamic so that requesting

node gets the data without delay.

References

[1] H.Artail, H.Safa, K.Mershad, Z.Abou-Atme, and

N.Sulieman, “COACS: A Cooperative and Adaptive

Caching System for MANETS,” IEEE Trans. Mobile

Computing, vol. 7, no. 8, pp. 961- 977, Aug. 2008

IJCAT International Journal of Computing and Technology, Volume 1, Issue 4, May 2014
ISSN : 2348 - 6090
www.IJCAT.org

15

[2] Kassem fawaz, student member, ieee, and Hassan

artail, senior member, ieee “Distributed Cache

Invalidation Method For Maintaining Cache

Consistency In Wireless Mobile Networks” IEEE

Transactions On Mobile Computing, Vol. 12, No. 4,

April 2013

[3] P. Cao and C. Liu, “Maintaining Strong Cache

Consistency in the World-Wide Web,” IEEE Trans.

Computers, vol. 47, no. 4, pp. 445- 457, Apr. 1998.

[4] G. Cao, “On Improving the Performance of Cache

Invalidation in Mobile Environments,” ACM/Kluwer

Mobile Network and Applications, vol. 7, no. 4, pp.

291-303, 2002.

[5] Tianji Li and Douglas Leith,“Adaptive Buffer Sizin for

TCP Flows in 802.11e WLANs”.

[6] Rochlani, Yogesh R., and A. R. Itkikar. "Integrating

Heterogeneous Data Sources Using XML Mediator."

International journal of computer science and network

3 (2012).

[7] T. Hara and S. Madria, “Dynamic Buffer control in

Mobile Ad Hoc Networks,” Proc. Database Systems

for Advanced Applications, pp. 111-136, 2004.

[8] J. Jung, A.W. Berger, and H. Balakrishnan,

“Modeling TTL-Based Internet Caches,” Proc. IEEE

INFOCOM, Mar. 2003.

[9] K. Mershad and H. Artail, “SSUM: Smart Server

Update Mechanism for Maintaining Cache

Consistency in Mobile Environments,” IEEE Trans.

obile Computing, vol. 9, no. 6, pp. 778-795, June

2010.

[10] X. Tang, J. Xu, and W-C. Lee, “Analysis of TTL-

Based Consistency in Unstructured Peer-to-Peer

Networks,” IEEE Trans. Parallel and Distributed

Systems, vol. 19, no. 12, pp. 1683-1694, Dec. 2008.

[11] L. Bright, A. Gal, and L. Raschid, “Adaptive Pull-

Based Policies for Wide Area Data Delivery,” ACM

Trans. Database Systems, vol. 31, no. 2, pp. 631-671,

2006.

[12] M. Denko, J. Tian, "Cooperative Caching with

Adaptive Prefetching in Mobile Ad Hoc Networks,"

IEEE WiMob'2006, pp.38-44, June 2006.

[13] B. Krishnamurthy, C. Wills, “Study of piggyback

cache validation for proxy caches in the World Wide

Web,”USENIX, Monterey, CA, December1997.

Rukmini Bhat B. Is a M.Tech Student of
Computer Science & Engineering Department
of SDIT, Mangalore. She graduated with BE
(Honours’) in Computer Science & Engineering,
affiliated to VTU university. She is currently
pursuing her Masters in Computer Science &
engineering at SDIT (Shree Devi College of
Engineering).Her research Areas are Computer
Networks, and Mobile Computing.

