
IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
 www.IJCAT.org

33

 Parallel K-Means Clustering Based on Hadoop

and Hama

1 Ashish A. Golghate, 2 Shailendra W. Shende

 1 Department of Information Technology, Yeshwantrao Chavan College of Engineering,

Nagpur, Maharashtra, India.

2 Department of Information Technology, Yeshwantrao Chavan College of Engineering,

Nagpur, Maharashtra, India

Abstract - The drawbacks of Map-Reduce are simplifying

reliability and fault tolerance, MR jobs does not preserve data in

memory. In the distributed file system MR jobs dump does not

read next MR Job. The Bulk Synchronous Parallelism does not

suffer this drawbacks, it is alternative to the MR model.

Clustering techniques is used for data analysis across all

disciplines. K-means is clustering algorithm its simplicity and

speed to run on large data set. The performance of K-means is

inefficient when large data set will be used. Map-Reduce and

Bulk synchronization Parallelism solve the problem of

inefficiency when large data set used. The experiments show

that our approach is efficient and Bulk synchronization

Parallelism is efficient as compare to the Map-Reduce.

Keywords - Map-Reduce, Bulk synchronization Parallelism,

K-means, Clustering.

1. Introduction

Clustering is important unsupervised learning method. A

definition of clustering is “the process of organizing

objects into groups whose members are similar in some

way” [4].Cluster is set of objects is similar between them

and dissimilar to the other clusters objects. K-means is

one of the very fast clustering algorithm and one of the

top 10 algorithms in the data mining. The K-means have

several problems; the main problem is dealing with high

dimension and large data set. Map-Reduce and Bulk

synchronization Parallelism is programming model for

implementation for generating and processing large data

set. To solve the problem mention above, Map-Reduce

used the Hadoop programming model and Bulk

synchronization Parallelism is used HAMA programming

model to solve the inefficient problem in clustering on

large data sets. Map-Reduce (MR) programming model is

popular for large-scale data analysis and Hadoop is used

for the implementation of this MR programming model

on very large scale. The major disadvantage of the MR

model is simplify reliability and fault tolerance, it does

not store data in memory between map and reduce tasks

of MR jab [5]. The implementation of the MR model , the

data is pass to the next MR job, in the distributed file

system(DFS) the MR job must dump its data, its does not

read the next MR job. To overcome this problem we used

the Bulk synchronization Parallelism is it allows to run

algorithms entirely in memory of the cluster.

Bulk synchronization Parallelism is programming model

consists of a sequence of supersteps. Each BSP superstep

is implementation in parallel by every peer in the BSP

computation. The superstep consists of a local

computation, a process communication, and barrier

synchronization [13]. For BSP computation we used

Apache's Hama platform built on the top of Hadoop that

can be used process any kind of data in the collective

memory of the cluster.

The main contribution of this paper is summarized as

follows:

The inefficiency problem in clustering on large data sets

is solved by using a distributed computing framework

Map Reduce and Bulk Synchronous Parallelism.

2. Related Work

In 2004 Google was first introduced the Map-Reduce

(MR) model. Much large-scale organization used this MR

model, Hadoop is one of the most popular MR model.

Hadoop is open-source project developed by Apache [2].

To perform data analysis now days Yahoo and many other

companies used the Hadoop for the implementation. In

1990 Leslie G. Valiant introduced the BSP model and

IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
 www.IJCAT.org

34

then since improved and extended by many others. The

best known implementations of the BSP model for data

analysis on the cloud are Hama. The BSP Hama it has not

reached the popularity of MR yet. Its open-source

counterpart, Giraph, and the general BSP platform,

Hama, are still in their very early stages of development

and are not used in the same degree as Hadoop

3. Background

In this section, introductions about the algorithms and

technologies adopted in this paper are given. An outline

on k-means is given in section 1, Map Reduce in section 2

and Bulk Synchronous Parallelism in section 3.

3.1 K-means

K-means first used in 1967 by James MaeQueen, the K-

means idea can be traced by Steinhaus in 1956.K-means

is an algorithm to classify or to group your objects based

on features into K number of group. The grouping is done

by minimizing the sum of squares of distances between

data and the corresponding cluster centroid. The purpose

of K-mean clustering is to classify the data. The K-means

is cluster analysis method which objective is to partition n

object in to k clusters; in this each object belongs to the

nearest centroid of the cluster.

Algorithm description as following:

Input: The number of clusters k and n documents

Output: k clusters

1. Randomly select k documents from n documents as

the initial cluster centers.

2. Calculate the distances of the rest documents to the

very center of the clusters, and assign each of the rest

documents to the nearest cluster.

3. Calculate and adjust each cluster center.

4. Iterate Step2 ~ Step3 until the criterion function

converge.

The program ends.

3.2 Map Reduce

In distributed data storage we need to consider such as

synchronization, concurrency, and load balancing for the

underlying system .In this simple calculation become very

complex. Map Reduce is a programming model

implementation for processing an generating large data

sets, which was introduced by Google to solve the

distributable problems. This Map Reduce programming

model solves the problems such as data distribution, fault

tolerance, machine to machine communication.

3.3 Map Reduce Programming Model

Map Reduce programming model map and reduce

function used the Mapper and Reducer interfaces.

3.3.1 Mapper

Map function requires handling the input of a pair of key

value and produces a group of intermediate key and value

pairs. <key,value> consists of two parts, value used for the

data related to the task, key stands for the "group number

" of the value . Map Reduce combine the intermediate

values with same key and then send them to reduce

function.

3.3.2 Reducer

Reduce function is also provided the intermediate key

pairs and the value set relevant to the intermediate key

value. Reduce function mergers values, to get a small set

of values. The process is called "merge ". There are

complex operations in the process. Reducer makes a

group of intermediate values set that associated with the

same key smaller.

3.3.3 K-means with Map Reduce

The k-means algorithm spends most execution time on

calculating the distances between objects and cluster

centroids. This process is, however, necessary for the

algorithm itself, and thus we must consider about

improving the efficiency of the algorithm from other

aspects. Therefore, enhancing the performance of the

distance calculation is the key to improve the time

performance of the algorithm. It is easy to note that the

execution orders of distance calculation of objects will not

affect on the final result of clustering. Therefore, the

distance-calculating process can be executed in parallel by

using the Map Reduce framework.

The maper function of the k-means algorithm using Map

Reduce is shown follows:

Input: centroids, input.

Output: output.

1: nstCentroid ← null, nstDist ← ∞

2: for each c ∈ centroids do

3: dist ← Distance (input. value, c);

4: if nstCentroid == null || dist < nstDist then

IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
 www.IJCAT.org

35

5: nstCentroid← c, nstDist ← dist;

6: end if

7: end for

8: output. collect(nstCentroid, object);

The reducer function of the k-means algorithm using Map

Reduce is shown follows:

Input: input.

Output: output.

1: v ← Φ ;

2: for each obj ∈ input. value do

3: v ← v ∪ {obj};

4: end for

5: centroid ← ReCalCentroid(v);

6: output. collect(input. key, centroid);

3.4 Bulk Synchronous Parallelism

Bulk Synchronous Parallelism computer consists of

processors connected by communication network. A BSP

computation proceeds in a series of global supersteps. The

superstep consists of a local computation, a process

communication, and barrier synchronization.

HAMA is a distributed computing framework based on

BSP (Bulk Synchronous Parallel) computing technique

for massive scientific computations.

3.4.1 K-means with Apache Hama's BSP

In a typical clustering scenario you will have much more

points than centers/means. So n >> k where n is number

of vectors and k is number of centers.

Since Apache Hama 0.4.0 will provide us with a new I/O

system it makes it really easy to iterate over a chunk of the

input on disk over and over again, we use this fact and put

all centers into RAM.

The trick in this case is that unlike in graph algorithms,

we not split the centers over the tasks, but every task

holds all k-centers in memory. So each task gets a part of

the big input file and every task has all centers. Now we

easily do assignment step, we just iterate over all input

vectors and measure the distance against every center.

While iterating we find the nearest center for each of the

n vectors. To save memory we are going to average our

new center "on-the-fly" At the end of the assignment step,

we have in each task the "on-the-fly" computed average

new centers. Now broadcast each of this computed

averages to the other tasks.

Then we are going to sync so all messages can be

delivered. Afterwards we are iterating in each task

through the messages and averaging all incoming centers

if they belong to the same "old" mean.

The fig.1 shows it is about the exchange of the locally

computed mean for two tasks.

Fig.1 Exchange of the locally computed mean for two tasks

As we can see on this fig, we have two tasks which have

calculated "their version" of a new mean. Since this isn't

the "global mean" we have to calculate a new mean that

will be consistent across all the tasks and is still the

correct mathematical-mean.

Apply the Average on data streams strategy. Each task is

going to get the local computed averages from each other

task and is reconstructing the global mean.

Actually this is the whole intuition behind it. As the

algorithm moves toward, this whole computation is

running all over again until the centers converged = don't

change any more. This is much faster than Map Reduce,

because we don't have to submit a new job for a new

computation step. In BSP superstep is less costly than

running a Map Reduce job is faster.

4. Experimental Environment and Data Set

In this paper, experiments are based on a PC with the

following hardware configuration: Intel (R) Core (TM)

DuoCPU T6570 @ 2.10GHZ, 2.10GHZ, 2.00GB RAM

and250GB hard disk. The software environment uses the

same configuration: Linux operating system; the

distributed computing platform of Hadoop and Hama; and

Java development platform JDK 1.6. The data used in this

experiment comes from text classification corpus of

20_newsgroups Data Set.

IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
 www.IJCAT.org

36

Experiment 1 Executing time by K-Means algorithm on

stand-alone computer and based on Map Reduce and

Hadoop for the same number of documents.

1.

Clustering K-Means clustering

The number of Documents (Size) 6000 (21 MB)

Number of Iterations 50

Execution time 1:28:36:72

2.

Clustering K-Means clustering

The number of Documents (Size) 4000(17 MB)

Number of Iterations 30

Execution time 00:32:00:83

Experiment 2. Executing time by K-Means algorithm on

stand-alone computer and based on BSP and HAMA for

the same number of documents.

1.

Clustering K-Means clustering

The number of Documents (Size) 6000 (21 MB)

Number of Iterations 50

Execution time 1:02:30:6

2.

Clustering K-Means clustering

The number of Documents (Size) 4000(17 MB)

Number of Iterations 30

Execution time 00:22:05:63

5. Conclusion

In this paper, work represents only a small first step in

using the Map Reduce programming technique in the

process of large-scale data Sets. We take the advantage of

the parallelism of Map Reduce to design a parallel K-

Means clustering algorithm based on Map Reduce. This

algorithm can automatically cluster the massive data,

making full use of the Hadoop cluster performance. It can

finish the text clustering in a relatively short period of

time. But Bulk Synchronous Parallelism is much faster

than Map Reduce, because you don't have to submit a new

job for a new computation step. In BSP the superstep is

less costly than running a Map Reduce job, therefore it is

faster.

References

[1] Aditya B. Patel, Manashvi Birla, Ushma Nair, “

Addressing Big Data Problem Using Hadoop and Map

Reduce”, NIRMA UNIVERSITY INTERNATIONAL

CONFERENCE ON ENGINEERING, NUiCONE-

2012,.

[2] Tomasz Kajdanowicz, Wojciech Indyk, Przemyslaw

Kazienko and Jakub Kukul, “Comparison of the

Efficiency of MapReduce and Bulk Synchronous

Parallel Approaches to Large Network Processing”,

IEEE 12th International Conference on Data Mining

Workshops 2012

[3] Wadoud Bousdira, Frédéric Gavay, Louis Gesbertz,

Frédéric Loulerguex, and Guillaume Petiot,

“Functional Parallel Programming with Revised Bulk

Synchronous Parallel ML” First International

Conference on Networking and Computing 2010

[4] I. Gourlay, P. M. Dew, K. Djemame “Bulk

Synchronous Parallel Computing Using a High

Bandwidth Optical Interconnect” Proceedings of the

International Parallel and Distributed Processing

Symposium 2010

[5] Songchang Jin, Shuqiang Yang, Yan Jia “Optimization

of Task Assignment Strategy for Map-Reduce” 2nd

International Conference on Computer Science and

Network Technology 2012

[6] Foto N. Afrati ,Dimitris Fotakis , Jeffrey D. Ullman

“Enumerating Subgraph Instances Using

Map-Reduce” in WSDM, 2012.

[7] Jiamin Lu, Ralf Hartmut G¨uting,” Parallel Secondo:

Boosting Database Engines with Hadoop” IEEE 18th

International Conference on Parallel and Distributed

Systems 2012

[8] F. Afrati and J. Ullman, “Optimizing multiway joins

in a map-reduce environment,” IEEE Transaction of

Knowledge and Data Engineering, vol. 23, no. 9, pp.

1282–1298, 2011.

[9] Hadoop. http://hadoop.apache.org/.

[10] D. Battre, et al. Nephele/PACTs: “A Programming

Model and Execution Framework for Web-Scale

Analytical Processing”. In SOCC’10.

[11] Hama. http://incubator.apache.org/hama/.

[12] M. Zaharia, et al. Resilient Distributed Datasets: “A

Fault-Tolerant Abstraction for In Memory Cluster

Computing”. 9th USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2012.

[13] A. Tiskin. “The Bulk-Synchronous Parallel Random

Access Machine”. Theoretical Computer Science,

196(1,2), 1998

[14] Hadoop Website, http://hadoop.apac

[15] Zhao, W., Ma, H., et al.: Parallel K-Means Clustering

Based on MapReduce. In: CloudCom 2009. LNCS,

vol. 5931, pp. 674–679 (2009)

[16] J. Han, M. Kamber, Data Mining: Concepts and

Techniques, Morgan Kaufmann Publishers, 2000.

[17] T. Kanungo, D. M. Mount, N. S. Netanyahu, C.

D.Piatko, R. Silverman, and A. Y. Wu, “An Efficient

Kmeans Clustering Algorithm: Analysis and

Implementation”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, July, 2002, Vol.

24, No. 7, pp. 881-892.

[18] J. Dean, S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters”, Communications of the

ACM, January, 2008, Vol. 51 No. 1, pp. 107-113.

[19] D. Borthakur, “The Hadoop Distributed File System:

Architecture and Design”, http://hadoop.apache.org/.

IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
 www.IJCAT.org

37

[20] Jeffrey Dean and Sanjay Ghemawat. MapReduce:

Simplified Data Processing on Large Clusters.In

Proceedings of the 6th USENIX Symposium on

Operating Systems Design and Implementation,pages

137-149, 2004.

First Author

Ashish A. Golghate received the
B.E. degree in Information Technology from
HVPM Amaravati in 2011 and perusing
MTech. degree in Information Technology from
YCCE, Nagpur in 2013. He worked as a
Teaching Assistant at 2-WEEK ISTE DBMS-
WORKSHOP conducted by IIT Bombay (21

st

may to 31
st
 may 2013) in YCCE Nagpur.

Second Author

Shailendra W. Shende pursuing Phd. from
VNIT, Nagpur in the area of Parallel
Processing. He worked as a Coordinator at
2-WEEK ISTE DBMS-WORKSHOP
conducted by IIT Bombay (21st may to 31st
may 2013) in YCCE Nagpur. He now
currently working as a Asst. Prof. in
Information Technology Department at
YCCE Nagpur.

