
IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
 www.IJCAT.org

88

Implementing Apriori Algorithm in Parallel

 1 Nilesh S. Korde, 2 Shailendra W. Shende

 1 Department of Information Technology, Nagpur University, YCCE

Nagpur, Maharashtra, India

2 Department of Information Technology, Nagpur University, YCCE

Nagpur, Maharashtra, India

Abstract - A Huge amount of data gets collected from society

with different sources. Hardly has it led to a useful knowledge.

For finding useful knowledge an algorithm is required. Apriori

is an algorithm for mining data from databases which shows

items that are related to each other. The databases having a size

in GB and TB need a fast processor. For fast processing multi-

core processors are used. Parallelism is used to reduce time and

increase performance, Multi-core processor is used for

parallelizing. Serial mining can consume time and reduce

performance for mining. To solve this issue we are proposing a

work in which load balancing is done among processors. In this

paper we have implemented Apriori algorithm in serial and

parallel manner and comparison of both on the basis of varying

support-count and time using parallel programming technique

Open Multi-Processing (OpenMP).

Keywords - Parallel processing, Apriori, OpenMP, Data

mining, Multicore processing.

1. Introduction

Technique for mining hidden knowledge from a large

number of databases, knowledge which is never seen

before Data mining is used [1]. For knowledge discovery

data mining is used. Data mining has Association rule

mining (ARM) as one of the functionality. To find the

relation between two items Association rule mining is

used, that frequently appearing in a large database with

each other. Mining frequent itemsets from huge

transactional databases Apriori algorithm is one that is

widely used. Apriori algorithm scans database more than

once for finding frequent itemsets [1].Increase in

performance of algorithm is required for dealing with

large volume of data during mining. Parallelizing Apriori

algorithm can improve performance of Apriori algorithm

drastically [2].Recently launched advanced computers

provides multi-core architecture for parallelizing Apriori

algorithm. Multi-core processors are available in

advanced computers [3]. Multi-core processor shares the

load among cores with single thread or multiple threads,

which reduce time for processing and increase

performance [4].

2. Related Work

Chao Yang, Tzu Chang and Chih Chang presents the

comparison of some tools that are specifically designed to

extract the most of data parallelism on multi-core system

using OpenMP [3].Ying Liu and Fuxiang Gao presents

the cubic convolution interpolation algorithm for image

processing and parallelized it by using OpenMP on multi-

core processors [4]. Ketan shah and Sunita Mahajan

present the performance of parallel Apriori algorithm on

heterogeneous nodes with different datasets and n

processors on a commodity cluster of machines [6].

Anuradha.T and Satya Prasad.R presents an evaluation of

the performance of Apriori on a hyper threaded dual core

processor compared to the performance on a non hyper

threaded dual core processor using fread() and mmap()

functions [7]. Rakesh Agrawal and Ramakrishna srikant

presents two new algorithms Apriori and ApriroriTid and

combined into an Apriori hybrid algorithm and

demonstrate in scale-up-properties [5]. Kyung Min Lee,

Tae Houn Song evaluates a parallel programming model,

parallel programs and OpenMP that can be benchmarked

to multi-core processors of embedded boards using

OpenMP and executed parallel programs on a dual-core

embedded system, analyzing the performance of

sequential programs and parallel programs by SERPOP

analysis [9]. Anuradha.T, Dr.Satya Prasad.R,

Dr.Tirumala Rao.S.N gives the performance of Apriori

using Linux mmap() function compared to fread()

function in both the serial and parallel environments [10].

Jaiwen Li, Zhang Zheng, Xuhoo Chen, Li Shen, and

Zhiying Wang give a performance model for OpenMP

parallelized loops to address the critical factors which

influences the performance [8].

3. Theoretical Background

IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
 www.IJCAT.org

89

A. Apriori Algorithm

 It is nothing but finding frequent itemsets using

candidate generation. It uses Apriori property that all

nonempty subsets of a frequent itemset must also be

frequent. Two steps used in Apriori algorithm are

Step 1: The Prune Step: To find the count of each

candidate in Ck the entire database is scanned. Candidate

k-itemset is represented by Ck. To find whether that

itemset can be placed in frequent k-itemset Lk to count

each itemset in Ck is compared with a predefined

minimum support count [1].

Step 2: The join step: Lk is natural joined with itself to

get the next candidate k+1- itemset Ck+1.

The major step here is the prune step which requires

scanning the entire database for finding the count of each

itemset in every candidate k-itemset. If the database size

is large, so to find all the frequent itemsets in the

database, it requires more time [1]

B. OpenMP

For shared memory parallel programming OpenMP

(OpenMulti-Processing) an Application programming

interface (API) is used. This specification provides a

model for parallel programming that is portable across

shared memory architecture from different vendors [11].

The OpenMP API supports Compilers from numerous

vendors. Compiler directives, Environment variables and

Runtime library routines are the primary components of

the OpenMP API [12]. OpenMP provides a task construct

useful for the expression of unstructured parallelism and

for defining dynamically generated unit of work [13]. The

advantage of OpenMP is its comparative simplicity of use,

because the detailed working for parallel program is up to

the compiler [12]. OpenMP supports multi-platform

shared memory multiprocessing programming in

FORTRAN, C/C++ and on much architecture, including

Microsoft Windows platforms and UNIX [13].

C. Multi-core Processor

Multi-core processors are those having two or more cores

integrated on a single chip [14]. The core can be with one

thread or two threads each [14]. For parallelism Multi-

core processor plays very important role as the cores share

work and helps to perform load balancing. The

performance of multi-core processor depends on the

software used. The work is equally shared among the

processors in load balancing which minimizes the

execution time and improve performance [14].

4. Experimental Work

We have implemented Apriori algorithm on a quad core

prosessor in a serial and parallel manner. Our objectives

are measuring the serial and parallel performance of

Apriori agorithm on a quad core processor with respect to

time and comparison between them. For our work we

mainly used Ubuntu 12.10 Linux operating system, intel

core 2 quad processor, and four standard datasets from

Frequent Itemset Mining Repository. Different support

counts from 30% to 70% for measuring performance is

used. The Real time observations are as follows

IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
 www.IJCAT.org

90

real time observations has shown that as support count

increases the time in seconds decreases. we need to run

Apriori algorithm in parallel to reduce the time and to

increase the performance further. OpenMP is going to use

for parallel implementation of Apriori algorithm on a

quad core processor.OpenMP uses Fork and Join concept

for parallelism [14].

In an OpenMP Fork and Join model the program begines

with master thread, some part of program can be make

work in parallel by creating chlid threads. Master thread

work in a serial manner until parallel construct is

encounterd[15]. Master thread create a team of child

thread which work in parallel in a parallel region.The

work is divided among the child threads equally by

parallel construct. After the execution the master thread

continues but the child threads get synchronized and

enumerated[16].

IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
 www.IJCAT.org

91

5. Conclusion

In this paper, we have implemented Apriori algorithm on

a quad core processor in a serial and parallel manner with

four standard datasets using different support counts

varing from 30% to 70%. From our work we can say that

parallel results are better than serial once.Our aim of

measuring the serial and parallel performance of Apriori

agorithm on a quad core processor with respect to time

and comparison between them get satisfied.

References

[1] Han and Micheline Kamber, Data Mining concepts

and Techniques 2nd edition Morgan Kaufmann

Publishers, San Francisco 2006.

[2] Anuradha.T, Satya Prasad R and S N Tirumalarao.

Parallelizing Apriori on Dual Core using OpenMP.

International Journal of Computer Applications

43(24):33-39, April 2012. Published by Foundation of

Computer Science, New York, USA.

 [3] Chao-Tung Yang, Tzu-Chieh Chang, Hsien-Yi Wang,

William C.C. Chu, Chih-Hung Chang. Performance

Campion with OpenMP Parallelization for Multi-core

Systems. Ninth IEEE International Symposium on

Parallel and Distributed Processing with Applications,

2011 IEEE, pp 232-237.

 [4] Ying Liu, Fuxiang Gao. Parallel Implementations of

Image Processing Algorithms on Multi-Core. 2010

Fourth International Conference on Genetic and

Evolutionary Computing, 2010 IEEE, pp 71-74.

[5] Agrawal R, Srikant R “Fast algorithms for mining

association rules” In: Proceedings of the 1994

international conference on very large data bases

(VLDB‟ 94), 1994 Santiago, Chile, and pp 487–499.

[6] Ketan D. Shah, Dr. (Mrs.) Sunita Mahajan.

Performance Analysis of Parallel Apriori on

Heterogeneous Nodes. 2009 International Conference

on Advances in Computing, Control, and

Telecommunication Technologies, 2009 IEEE, pp 42-

44.

[7] Anuradha.T, Satya Prasad. Parallelizing Apriori on

Hyper-Threaded Multi-Core Processor. International

Journal of Advanced Research in Computer Science

and Software Engineer. Volume 3, Issue 6, June 2013.

[8] Zhong Zheng, Xuhao Chen, Zhiying Wang, Li Shen,

Jiawen Li. Performance Model for OpenMP

Parallelized Loops. 2011 International Conference on

Transportation, Mechanical, and Electrical

Engineering (TMEE) December 16-18, Changchun,

China, 2011 IEEE, pp 383-387.

[9] Kyung Min Lee, Tae Houn Song, Seung Hyun Yoon,

Key Ho Kwon, Jae Wook Jeon. OpenMP Parallel

Programming Using Dual-Core Embedded System.

2011 11th International Conference on Control,

Automation and Systems Oct. 26-29, 2011 in

KINTEX, Gyeonggi-do, Korea, pp762-766.

[10] Anuradha.T, Dr.Satya Prasad.R, Dr.Tirumala Rao.S.N

Performance evaluation of apriori with memory

mapped files. International Journal of Computer

Science Issues Vol.10, Issue 1, no1, January 2003.

[11] “OpenMP Application Program Interface” Version 3.0

May 2008.

[12] Tim Mattson and Larry Meadows. “A ‘Hands-on’

Introduction to OpenMP” Intel Corporation.

[13] Kent Milfeld. “Introduction to Programming with

OpenMP” February 6th 2012, TEXAS ADVANCED

COMPUTING CENTER (TACC).

[14] Multi-core Processor Wikipedia [Available]

en.wikipedia.org/wiki/Multi-core processor.

[15] Blaise Barney, Lawrence Livermore. Introduction to

ParallelComputing.https://computing.llnl.gov/tutorials/

parallel_comp/.

[16] Frank Willmore. “Introduction to Parallel

Computing”, February 6, 2012.

