
IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
www.IJCAT.org

101

Implement a Number of Data with One Swap

Operation

1 Najim Sheikh, 2 Prajakta Barapatre, 3 Deepa Bagde, 4 Shrutika Tingne

1 M-tech Scholar, RGPV Bhopal

2, 3, 4 M-tech Scholar, RTMNU Nagpur

Abstract – Sorting is a method that arranges the list of

elements in ascending or descending order. It is frequently

used in a large variety of important applications used by

schools, hospitals, banks and in many other organizations.

There are many sorting methods having their own Time and
Space Complexity. This paper presents a novel sorting method
named as SOS i.e. Swap Once and Sort. This method provides

the correct position to an element by only one swap operation.
It is based on the concept that, in ascending order list, all the

elements after a particular element, will be greater than that
element and vice versa for descending order list. Its algorithm

is developed and then it is implemented in ‘C’. Its C program

is run for random data set of size 1000-30000 with the
increment of 5000. For comparison purpose two parameters

used are number of swap operations and CPU time taken to
sort the given list. Comparison is performed with three existing

popular sorting methods Bubble sort, Selection sort and
Insertion sort. SOS takes lesser CPU time then all these three
sorting techniques. SOS requires lesser number of swap

operations in comparison to Bubble sort, Selection sort.

Insertion sort uses shifting of data rather than swapping

concept.

Keywords - Bubble sort, correct position, Insertion sort,

Sorting, Selection sort, Swap.

1. Introduction

A sorting technique is an algorithm that puts elements of

a list in a certain order. Efficient sorting is important for

optimizing the use of other algorithms (such as search,

merge sort and Binary Search algorithms) that require

sorted lists to work correctly. A good algorithm is that

which gives satisfactory result for every range of data set

[1]. Sorting is the fundamental problem of computer

science and remained burning issue for research over the

last several years due to time complexity [2]. Sorting is
often used in a large variety of critical applications and

is a fundamental task that is used by most computers.

Sorting algorithm falls into two basic categories:

comparison based and non-comparison based using

swapping or shifting of data. The comparison based

sorting algorithm works on the basis of comparing the

elements. Comparison based important algorithms are:

quick sort, merge sort, heap sort, bubble sort, and

insertion sort. A non-comparison based algorithm sorts

an array without consideration of pair wise data

elements. Radix sort is a non-comparison based

algorithm.

Some existing algorithms are very fast but complex to

implement, while some are not fast but easy to

implement. Moreover some are better option for small

size data while some for larger size data. Some sorting

algorithms are suitable for floating point numbers, some
are good for specific range, some are better for large

dataset, and some are useful for data set having non-

distinct values. There are two groups of sorting

algorithms one having complexity O(n
2
) which include

bubble, insertion, selection and other with complexity

O(nlog(n)) which includes heap, merge and quick sort

techniques in average case.

In comparison based sorting techniques, Comparison

and swapping operations are to be performed. But

comparison operation is the key operation to be
considered for „time complexity calculation of the

sorting algorithm on the basis of expression representing

total number of comparison operations while ignoring

the “swapping” operations.

Although practically it is observed that swapping

operation effects the running time and increases the CPU

work load.

In this paper we are introducing a simple and efficient

novel sorting technique named “SOS: Swap Once and

Sort”. This technique places the particular data element

at correct position by only one swapping operation.

Practically it takes lesser running time than selection and

bubble sort therefore is an efficient sorting technique for

large data set.

2. Sorting Algorithms

Sorting of data (numeric or Character) always remained

in the focus for researchers. Sorting algorithms are still

being optimized or even newly invented. In case of

mobile systems and information retrieval, efficient

sorting is a major concern. Following we describe some

sorting algorithms that have used in the context of this
study and are regularly taught to IT students. Following

IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
www.IJCAT.org

102

we include the critical discussion of Bubble sort, Heap

sort, Insertion sort, Merge sort, Quick sort, Selection

sort, Shell sort and Shaker sort [3].

Bubble sort belongs to the family of comparison sorting.

It works by repeatedly iterating through the list to be

sorted, comparing two items at a time and swapping

them if they are in the wrong order. The worst-case

complexity is O(n
2
) and the best case is O(n). Its space

complexity is O(n).

Insertion sort is a naive algorithm that belongs to the

family of comparison sorting. In general insertion sort

has average time complexity of O(n2) but is known to be

efficient on data sets which are already substantially

sorted. It’s time complexity in best case is linear O(n).

Furthermore insertion sort is an in-place algorithm with
O (n) space complexity.

Heap sort is a comparison-based sorting algorithm and

part of the selection sort family. Although somewhat

slower in practice on most machines than a good

implementation of Quick sort, it has the advantage of a

worst-case time complexity of O (log (n)).

Merge sort was invented by John von Neumann and

belongs to the family of comparison-based sorting.

Merge sort has an average and worst-case performance
of O (log (n)). Unfortunately, Merge sort requires three

times the memory of in-place algorithms such as

Insertion sort.

Quick sort belongs to the family of exchange sorting.

It’s complexity in average case is O (log (n)), while in

worst case it requires O (n
2
) comparisons. It is one of the

most efficient algorithms and is used for many sorting

tasks. Its space complexity depends on factors such as

selection of right Pivot element, etc. On average, its

recursion depth is of O (log (n)) and therefore space

complexity is O (log n) as well.

Selection sort searches for the minimum value,

exchanges it with the value in the first position and

repeats the first two steps for the remaining list. It

belongs to the family of in-place comparison sorting. Its

average case time complexity is O (n
2
), that is why it is

inefficient for large. Selection sort typically outperforms

bubble sort but is generally outperformed by Insertion

sort.

More Generalized form of Insertion sort is termed as

Shell sort [4]. It is named after its inventor, Donald

Shell. It belongs to the family of in-place sorting but is
regarded to be unstable. Its worst case time complexity

is O (n
2
), but can be improved to O(n log (n)). Shell sort

improves Insertion sort by comparing elements

separated by a gap of several positions.

This lets an element take“bigger steps” toward its

expected position. Multiple passes over the data are

taken with smaller and smaller gap sizes. The last step of

Shell sort is a plain Insertion sort, but by then, the list of

data is guaranteed to be almost sorted.

A variant of Shell sort is Shaker sort. It compares each

adjacent pair of items in a list in turn, swapping them if

necessary, and alternately passes through the list from

the beginning to the end then from the end to the

beginning. This process stops when a pass does no

swaps. Its time complexity is O (n
2
) in worst case, while

O (n) in best case.

3. Material and Method

In this section we discuss SOS by explaining the steps

used for sorting by giving its pseudo codein c, an

example and its implementation details with results

obtained.

3.1 Swap Once and Sort: SOS

It is an in-place sorting technique. An in-place algorithm

is an algorithm which overwrites its input with its
output. This sorting technique is applicable on distinct

and non-distinct data set. Following is the pseudo code

for SOS.

SOS (list, n)

{ i=0; //function start

while (i <= n-1) //first while loop,

{ count = 0; j = i+1 ;

while (j < n)

{ If (list[i] > list[j]) then
Count++ ; J++ ;

}

k = 0;

If (count > 0) then

{ while (k <= n-1)

{

If (list[i] != list[i+count+k])

IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
www.IJCAT.org

103

{swap the list[i] and list[i+count+k]; Break; }

else

k++ ;

}

}

else

i++ ;

} // end of first while loop } //

end of function

Note: variable „k‟ increment if the pivot element and
swapped element is same it will increase the index till
when it does not find the different element or end of

array.

3.2 Pseudo Code in C

Let us consider a set of data to be sorted is in thelist of

size n. Name of the function is SOS with arguments list

and n.

In general, procedure of applying SOS for a distinct data

set, we select the i
th
 indexed element as a pivot element.

Than we count the number of smaller elements coming

after the pivot element. Suppose total number of smaller

elements is count then we swap the pivot i.e. i
th
 indexed

element with the [count+i]
th
 indexed element. That

position will be the correct position of that pivot

element. After this swapping, that pivot element will not

be involved in another swapping operation.

For the data set of non-distinct elements i.e. in data set

there is repletion of some elements. In this case the

procedure remains same but if the element which is

ready to swap with pivot element is equal to the pivot

element then swap operation is not performed but we

move on to the next element and check if that element is

not equal to pivot element then perform swapping and so

on.

3.3 Example

Now, explaining the SOS with an example data of size

10. Let us take an array named list [10] as following:

15 12 10 16 26 5 20 7 11 24

First we select 0
th
 index element „15as a pivot element.

Total number of smaller elements than the pivot element

is counted. Using the concept, “the right position of any

element is after the number of lesser elements”, for

ascending order list. In theist [10] there are‘5’ smaller

elements than pivot element 15.swapping the pivot

element with the next 5
th

 element in the list [10] i.e.

Swapping with the element at index value 5 in the list

[10], where index is ranging from 0 to 9. It means 15

will be swapped with 5 and list [10] becomes as

following:

5 12 10 16 26 15 20 7 11 24

We have completed the first iteration and placed the

pivot element 15 at its correct and final position. Correct
position is the position where it would be in the sorted

list and 15 is placed at its final position by just one

swapping. Element 15 is shaded with grey color as an

indication of final position of the particular element as it

would be in the sorted list.

Next we select the 0
th
 index element as pivot

element which is 5. It is found that there is no element

smaller than 5in the list[10]. It means that the pivot

element is already at its final position. So, by now two

elements are at their final and correct position shown in
below list colored grey. Now, we will move at next

element 12 in the above list and following the same

steps as done for the first pivot element 15. At this step

12 is exchanged with its next 3
rd

 element i.e. 26 and list

[10]elements are as following:

5 2610 1612 15 20 7 11 24

Similar steps will be repeated till all the elements

get their final and correct position as would be in sorted

list. Following table shows all the steps of SOS method

for sorting the above data of size 10.

5 12 10 16 26 5 20 7 11 24

5 12 10 16 26 15 20 7 11 24

 5 12 10 16 26 15 20 7 11 24

 5 26 10 16 12 15 20 7 11 24

 5 24 10 16 12 15 20 7 11 26

 5 11 10 16 12 15 20 7 24 26

 5 16 10 11 12 15 20 7 24 26

 5 20 10 11 12 15 16 7 24 26

IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
www.IJCAT.org

104

 5 7 10 11 12 15 16 20 24 23

 5 7 10 11 12 15 16 20 24 23

 5 7 10 11 12 15 16 20 24 23

3.4 Implementation and Comparative Study

We have the run the „C code using the compiler “C free”

of SOS, bubble sort, selection sort and insertion sort for

the study of worst case running time of each separately

for same data set, following table shows the running

time taken by SOS, bubble sort, selection sort and

insertion sort.

Running time in milliseconds

Data Size SOS Insertion Sort Selection Sort Bubble Sort

1000 0.000 0.000 0.000 0.000

5000 0.078 0.078 0.140 0.156

10000 0.343 0.343 0.593 0.625

15000 0.750 0.765 1.328 1.421

20000 1.421 1.432 2.468 2.687

25000 2.187 2.203 3.843 4.187

30000 2.953 3.171 4.101 4.480

Above table data shows that SOS and Insertion sort are

sorting the data of size 1000-10000 in same time, while

SOS sorts the data faster for data size 15000-30000.

With all different data sets SOS is faster than selection

sort and bubble sort. Above data is plotted in graphical

form shown below in figure 1.

Fig. 1: Running time vs. Data size

Number of swapping operations in worst case

Data Size (n) SOS Selection sort Bubble sort

1000 500 499499 499500

5000 2500 12497499 12502500

10000 5000 49994999 50005000

15000 7500 112492499 112507500

20000 10000 199989999 20001000

25000 12500 312487499 312512500

30000 15000 449984999 450015000

Above data is plotted in graphical form shown below in figure 2.

Fig. 2: Number of swapping operations vs. Data size

We have compared the SOS with selection sort and

bubble sort on the basis of another parameter also that is

Number of swapping operations taking place to sort the

given data. Insertion sort is not the part of it as instead of

swapping, shifting operation is used in it.

4. Discussion of Results

In fact running time taken by any particular program

depends on processor and configuration of the system.

We have used “C free” compiler to observe running time

by including the header file time.

Running time is calculated by the statement runtime=

((t2-t1) / (double) CLOCKS_PER_SEC), where t1 and

t2 is the initial and ending run time respectively. We

have tested the SOS for worst case. Results show that
SOS and Insertion sort are sorting the data of size 1000-

10000 in same time, while SOS sorts the data faster for

data size 15000-30000. With all different data sets SOS

is faster than Insertion sort, selection sort and bubble

sort.

There is huge difference in number of swapping

operations used for sorting same data set in worst case

IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
www.IJCAT.org

105

by SOS, bubble sort, selection sort and Insertion. There

are much lesser swapping operations required for SOS in

comparison to bubble sort, selection sort. Insertion sort

uses shifting operation rather than swapping to sort.

 The given set of data. SOS uses only n\2 swapping

operations in the worst case.

5. Conclusion and Future Work

SOS has the unique concept to sort the data. Concept of

SOS is simple. It is more efficient for small data set in

comparison to insertion sort, selection sort and bubble

sort. SOS uses maximum n/2 swapping operations to

sort the given data of size n. It places the element at its

correct position, i.e. position where that element will be
in sorted list, after one swapping operation only. In

future we intend to compare it with other existing

techniques by observing the running time and number of

comparison operations of each.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.
Stein (2003)."Introduction to Algorithms", MIT

Press, Cambridge, MA, 2nd edition.
[2] Alfred V, Aho J, Horroroft, Jeffrey DU (2002). Data

Structures and Algorithms (India: Pearson Education
Asia).

[3] Seymour Lipschutz (2009), “Data Structure with C”,
Schaum Series, Tata McGraw-Hill Education.

[4] Brejov´a, B. (2001), „Analyzing variants of Shell

Sort, Information Processing Letters 79(5), 223–
227.

[5] Lafore, R. (2002), Data Structures and Algorithms in
Java, 2nd edn, SAMS Publishing, Indianapolis,
Indiana, USA.

[6] Robert S (1998). Algorithms in C. Addison-Wesley
Publishing Company, Inc.

[7] Knuth E., The Art of Computer Programming
Sorting and Searching, Addison Wesley, 1998.

