
IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
 www.IJCAT.org

1

A Comparative Study of XML Parsers across
Application

1 Ms.V.M.Deshmukh 2 Dr. G.R. Bamnote

3 Ms.P.V.Kale

1, 2, 3Computer Science & Engineering Department, Prof. Ram Meghe Institute of Technology & Research,
Badnera-Amravati.,MH.

Abstract - In today’s world of high information sharing and
transmission, XML plays a very important role as a universal
format for data interchange, which allows users to transparently
share XML documents. To achieve this transparency, XML
documents need to be conformant with XML specifications.
This specification conformance can be checked using an XML
parser. The parser not only makes the data accessible, but it also
ensures the validity of XML documents. Currently there are a lot
of XML parsers, and most of them evolve, improve and become
sophisticated. Though all the parsers serve the same purpose,
they vary in terms of specification, performance, reliability and
also conformance to standards. If a wrong choice has been made,
it is highly possible to leads to the problem of excessive
hardware requirement, which will resulted in productivity
degradation. For XML document to be used, parsing is the most
important process to be done. While parsing the document which
parser is best suited and gives the more accurate result with
respect to processing time , memory space that helps us
to select the parser for our file to be parsed. Previously the
comparison on various parsers implemented in java has been
done, now in this dissertation we are going to analyze the
comparison based on the parsers supporting .net as a platform.

Keywords - XML, XML Parser, Parsing

1. Introduction

XML is an Universal language (notation) for describing
structured data. The data is stored together with the meta-
information about it. Looks like HTML – text based, uses
tags and attributes. It is used to describe other languages
(formats) for data representation. Worldwide-affirmative
standard, supported by the W3C (www.w3c.org).
Platform, programming languages and OS independent. It
is Simple, Extensible, Easy to process, Easy to generate
and data interchange critical for networked applications
,"XML will be the ASCII of the Web: basic, essential,
unexciting “ by Tim Bray. So we can say that XML is a
file extension for an Extensible Markup Language(XML)
file format used to create common information formats
and share both the format and data on World wide web
,intranet and anywhere using standard ASCII text. Parsing

is the first step while doing the XML processing.
Application developer must understand the operational
and performance characteristics of XML processing. XML
processing occurs in four stages: parsing, access,

modification, and serialization.

Input XML Document

 Output XML Document

Fig 1 XML processing stages and parsing steps. processing

2. Literature Review

2.1 Comparison of Parsers for Different Languages

In 1999, Cooper [31] studied how parsing speeds vary
with the programming language used for developing the
parser. In this study, two java parsers, two C parsers, one
perl and one python parser were used. Five XML
documents with sizes ranging from 160 K to 5.0 MB were
used in this study. This study concluded that C parsers are
always faster compared to java, perl or python parsers.

2.2 Analysis of XML Parsers by Performing Tests

In 2002 , Srikanth Karre et. al explains [23] that the
parsing of XML documents can be done using two
approaches, Event Based Parsing and Tree Based Parsing.
In Event Based Parsing, the XML data is parsed
sequentially, one component at a time, and the parsing of
events such as the start of a document, or the end of a
document are reported directly to the application. SAX
(Simple API for XML) is the standard API for event-
driven parsing. In Tree Based Parsing, the XML document

Parsing Access Modification

Serialization

IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
 www.IJCAT.org

158

is compiled into an internal tree structure and stored in
main memory. Applications can then use this tree structure
for navigation and data extraction. For example, the
Document Object Model (DOM) uses tree based parsing,
providing a standard set of objects for representing HTML
and XML documents, a standard model of how these
objects can be combined, and a standard interface for
accessing manipulating them. Kai Ning et. al. proposed [6]
a design scheme for DTD – based XML parser which has
been implemented in the XML based network
management R & D center.

Nicola. et. al. [10] explains- study of XML parsing
performance across a selection of commercial database
applications has shown that XML parsing is the major
bottleneck [4]. They found that parsing even small XML
documents can increase the computation cost of a database
transaction by 2 to 3 times. Robert A et. al. describes [12]
a validating XML parsing method based on deterministic
finite state automata (DFA). XML parsing and validation
is performed by a schema-specific XML parser that
encodes the admissible parsing states as a DFA.

2.3 Parallel XML Parsing Algorithm

Wei Lu et. al. [8] states that there are a number of ways to
improve XML parsing performance. One of the approach
would be to use pipelining. In this approach, XML parsing
could be divided into a number of stages. Each stage
would be executed by a different thread. This approach
may provide speedup, but software pipelining is often hard
to implement well, due to synchronization, load-balance
and memory access costs.

2.6 VTD-XML-based Design and Implementation of

GML Parsing Project

Lan et. al. [16] explains VTD-XML is a new open-source
XML parsing model. It centers on a non-extractive XML
parsing technique called Virtual Token Descriptor (VTD).
It features random access capability, high performance,
and low-memory consumption.

Su Cheng Haw and G. S. V. Radha Krishna Rao have
presented a model called “Comparative Study and
Benchmarking on XML Parser”. In that, they compare the
xerces and .NET parsers based on the performance,
memory, usage and so on[2].

Bruno Oliveira1,Vasco Santos1 and Orlando Belo2 -
explains in order to provide a benchmark of each one of
APIs tested the used set of XML example files, which
represents typical real-world applications. These files have
several sizes categorized as Small (between 1,6 ~ 6,8 KB),
Medium (10 ~ 1 MB) and Big (between 1 ~ 15MB). Tests

were conducted with files in memory with the purpose of
reducing I/O costs. XML parsing performance was
conducted for testing latency, memory usage and
navigation performance [4].The number of such
techniques are available for doing the performance
analysis on the individual basis in this we are comparing
all those on a single XML document getting the overall
review for time and space complexity.

V.M. Deshmukh, G.R. Bamnote- Campare the
performance of different parsing like DOM, SAX for
different data structures like linked list,stack, array and
queue. Using the different data structure for accessing or
reading the data from the database required less time as
compared to others method.

3. Proposed Methodology

In this dissertation the XML document is parsed using
different parsers available for ex. DOM(Document Object
Model) , SAX (Simple API for XML), VTD (Virtual
Token Descriptor), Xerces, Pull parser and so on. After
parsing the performance of the XML parser is evaluated
with respect to time and space in the form of graph
showing which one is the best parser for parsing the given
XML document. Java API’s are being used for calculating
the performance of the parsers. Thus a high-performance
XML parsing and validation technique that is time and
space optimal has been found out. This is to analyze which
particular parser is suitable for certain applications.

A XML SAX parser has been implemented efficiently.
The model also provides a novel mechanism to trace the
stealing actions, and the equivalent sequential results are
obtained by gluing the multiple parallel running results
together. The basic idea of stealing based scheme is that
every thread works on its own local task queue and
whenever it runs out of the task it steals the task from
other thread’s task queue.

An XML parser can be built by extracting tokens (e.g. start
and end tags) from a document by reading it from the
beginning. With the help of data structure, we can parse it.
For example, A DOM tree can be built by extracting
tokens (e.g. start and end tags) from a document by
reading it from the beginning. A stack (S) is maintained
and is initially empty. This stack essentially stores the
information of all the ancestors (in the DOM tree) of the
current element being processed in the document. When a
start element tag say <e> is read, a DOM node (de) is
created for element (e) and any (attribute, value) pair that
is associated with the element is parsed and stored, by
creating the necessary DOM nodes. If S is not empty, then
this implies that (de)’s parent node has already been
created. If (e) encloses text,then a DOM node for the text

IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
 www.IJCAT.org

159

is also created and linked as a “text” child of de. When an
end element tag say </e> is read, e is checked with the top
of stack S. If the element names do not match, then the
parsing is aborted as the document is not well formed.
Otherwise, the top of S is popped and the parsing
continues. After the last character of the document is
processed, if S is empty, then the entire DOM tree has
been constructed. Otherwise, the document is not well-
formed.

4. Performance Analysis

Currently industries use XML files for permanently
storing large amounts of data and XML files have not just
remained a format for data interchange . And wherever
these files are used, data from these files needs to be
extracted and manipulated often. An XML parser is used
to read the XML document. The document is divided into
different parts such as element, attributes, etc., by these
parsers. Then this information is passed to the application
which needs it. In some cases, if the document is not well
formed, the parser will send an error and stop parsing. In
other cases, it will parse the whole document and send all
the errors together. But if the error is encountered, it will
only give information about the error and not the contents
of the XML document.XML parsing can seriously affect
overall performance for any project it is used in. Hence it
is very important to study different APIs which have the
capability of XML parsing and to compare the
performance of the APIs to choose the best method for a
given condition.

Considering the importance of parsers in this system the
comparison is done on various XML files of varying file
sizes as small ranges below 1 KB, medium range above 1
KB and Large range above 6 KB .

1. The input to the system is an .xml file which is valid.
2. This has been checked by one of the class of .net i.e.

XMLTextReader class.
3. Once the file is supposed to be valid we can parser the

file.
4. The tree view can be seen for each file.
5. Internal Processing can be checked for each and every

file.
6. The graphical representation has been seen with the

file size on x axis and different parameters as
ParseTime ,ParseAttributes ,PageMemoryUsed on Y
axix.

7. The size of XML documents to be considered

When parsing any XML document, the size of file can
matter a lot.

For the event type are SAX, StAX, the size of XML
document usually doesn’t matter, since the parsing is done
by streaming the XML data to the parser.On the other
hand, for tree based, the tree representation of the XML
document is created in the memory. Hence the bigger the
XML file, the bigger the tree document that is formed.
This can become a problem when the files are really very
large. For these reasons, the size of an XML file plays an
important role in choosing any kind of Parser.

8. A file of size 5 KB can be considered a small file,

while a file of size 1 MB and 10 MB can contain a
huge amount of data. Therefore for the experiments
we will be using 3 files with different sizes 5KB,
1MB and 10 MB. This will give a good range for
comparing the processing time results.

9. The output is in the form of a chart plotted across
every file that has been parsed.

10. The graph is plotted for every file size small , medium

and large for which the entry has been done in the
database.

11. The entry has been done for the parser with its type i.e
tree based , event based , simple , VTD etc

• Tree based
These APIs create a tree representation of the
XML document in the memory. Data can be
accessed by navigating through this tree.
Document Object Model (DOM) is a tree based
API. There are many other tree based APIs
available.

• Event based
These APIs do not build a tree representation.
They report different parsing events like start
element, end element using the call back method.
Handlers are designed to deal with the events.
Simple API for XML (SAX) is the most common
type of event-based.

5 Result Analysis

Result analysis is the important part of this dissertation
as the project focused mainly on the comparison
betweenthe available parsers. In this section we
performthe graphical analysis by considering different
factors as below. The below graphs are plotted for doing a
comparison between different parameters such as Parsing
Attributes vs Memory Space vs Parsing Time. The
comparison has been done for the number of parsers
available supporting to the .net platform. Such kind of
comparison gives us the option to choose the best suited
parser for our application.

IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
 www.IJCAT.org

160

5.3.1 Graph for Small File Size

Assumption : Small file size below 1KB bytes

Table for Small file Comparison

In the above graph we can see that the SAX parser and
TextReader requires the same memory space for the small
file size i.e. of 382 bytes. While considering for Time(ms)
it was less for TextReader as compared to SAX. suited to
parser the smaller file size. But memory space requirement
is more.

5.3.2 Graph for Medium File Size

Assumption : Medium file size above 1 KB bytes

Table for medium file Comparison

The above graph shows that Nano XML parser and VTD
takes the same memory space and same parsing attributes
but if we consider the time nano XML parser will take a
less time than VTD. This comparison has been done on the
medium file size .From the above comparison for medium
file size we can conclude that nano XML will be the best
parser to parse the file.

5.3.3 Graph for Large File Size

Assumption : Large file size above 6 KB bytes

Parser Parsing

Attribute

Time Memory

Space

CommonLib 10 15 23400

DOM 6 20 23888

SAX 9 53 19288

SAXPull 7 55 23384

TextReader 6 53 19288

VTD 10 14 23400

Nano 10 56 23400

Simple 4 15 23384

Parser Parsing
Attributes

Time(ms) Memory
Space

CommonLib 10 31 23400

DOM 6 26 23384

SAX 9 622 23384

SAXPull 7 625 23384

TextReader 6 308 23384

VTD 10 42 19304

Nano 10 31 19304

Simple 4 26 23384

IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
 www.IJCAT.org

161

Table for Large file Comparison

The above graph shows that for the larger file size the
SAX(Pull) parser takes the minimum memory allocation
but the time required is more. The time taken for parsing
for the simple parser is minimum but memory allocation
was more.

6. Conclusion & Future Work

There have been a handful of studies and researches
towards XML parsers. Nevertheless, most of them are not
up to date. As XML parser is a technology, which is
changing rapidly for the moment, there is no single study
or research that would valid forever. The result of the
study indicates that SAX has been the best parser in terms
of performance. However, xParse outperformed in terms
of supporting large-scale of dataset efficiently.
Nevertheless, performance is not the only criteria;there are
lots of factors to be considered when choosing XML

parser, such as organization’s need, API support, platforms
and license fees.

Since the testing and benchmarking only involve in
evaluating two most popular parsers, the .NET and Xerces
parser, the study can be further extended in future. Some
of the future approaches could includes 1): Compare the
performance of new and established APIs DOM, SAX,
StAX,Pull or electric XML together in a set of
benchmarking tool,and 2): Compare and study the
conformance of parsers to some of the new features such
as support to new APIs and eXtensible Stylesheet
Language Transformation (XSLT) Ability.

References

[1] Zisman, A., “An Overview of XML”, Computing &

Control Engineering Journal, 2000.
[2] Slominski, A., “Design of a Pull and Push Parser

System for Streaming XML”, Indiana University,
Technical Report TR550, 2001.

[3] Srikanth Karre and Sebastian Elbaum,” An Empirical

Assessment of XML Parsers”,2002.
[4] Kai Ning, Luoming Meng,“Design and Implementation

of DTD-based XML parser”, proceedings of
ICCT2003.

[5] Chengkai Li,”XML Parsing, SAX/DOM”,
[6] Nicola, M. and John, J., “XML Parsing: a Threat to

Database Performance” International Conference on
Information and Knowledge Management, 2003, pp.
175-178.

[7] Robert A. van Engelen, “Constructing Finite State

Automata for High-Performance XML Web Services”,
in the proceedings of International Symposium on Web
Services and Applications (ISWS) 2004.

[8] Wei Lu, Kenneth Chiu, “A Parallel Approach to XML
Parsing”, in the 7th International Conference on Grid
Computing, IEEE/ACM 2006.

[9] Tong, T. et al, “Rules about XML in XML”, Expert
Systems with Applications, Vol. 30, No.2, 2006, pp.
397-411.

[10] Su Cheng Haw ,G. S. V. Radha Krishna Rao,” A

Comparative Study and Benchmarking on XML

Parsers”, Advanced Communication Technology, The
9th International Conference (Volume:1) ISSN
:1738-9445 , 2-14 Feb. 2007 pp. 321 – 32.

[11] Su Cheng Haw ,G. S. V. Radha Krishna Rao,” A
Comparative Study and Benchmarking on XML
Parsers”, Advanced Communication Technology, The
9th International Conference (Volume:1) ISSN
:1738-9445 , 2-14 Feb. 2007 pp. 321 – 32

[12] Wei Lu, Dennis Gannon, “Parallel XML Processing by
Work Stealing”, SOCP'07, June 26, 2007, Monterey,
California, USA.

[13] Wei Lu, Dennis Gannon, “Parallel XML Processing by

Work Stealing”, SOCP'07, June 26, 2007, Monterey,
California, USA.

[14] Yinfei Pan, Wei Lu, Ying Zhang, Kenneth Chiu,”A

Static Load-Balancing Scheme for Parallel XML

Parser Parsing
Attributes

Time
(ms)

Memory
Space

CommonLib 10 15 23400

DOM 6 43 23888

SAX 9 991 23384

SAXPull 7 977 19792

TextReader 6 512 23384

VTD 10 22 23400

Nano 10 47 23904

Simple 4 31 23384

IJCAT International Journal of Computing and Technology, Volume 1, Issue 3, April 2014
ISSN : 2348 - 6090
 www.IJCAT.org

162

Parsing on Multicore CPU”s, Seventh IEEE
International Symposium on Cluster Computing and
the Grid(CCGrid'07) 0-7695-2833-3/07 $20.00 © 2007

[15] Wei Zhang, Robert A. van Engelen, “An Adaptive
XML Parser for Developing High-Performance Web
Services”, Fourth IEEE International Conference on
eScience, 2008, pp 672-679

[16] Tak Cheung Lam and Jianxun Jason Ding Cisco
Systems Jyh-Charn Liu Texas A&M University ,
“XML Document Parsing: Operational and
Performance Characteristics “, published by IEEE
computer society , October 7 , 2008

[17] Yusof Mohd Kamir, Mat Amin Mat Atar, “High
Performance of DOM Technique in XML for Data

Retrieval”, 2009 International Conference on
Information and Multimedia Technology.

[18] Lan Xiaoji Su Jianqiang Cai Jinbao, “VTD-XML-based

Design and Implementation of GML Parsing Project”,
IEEE Information Engineering and Computer Science,
2009. ICIECS 2009. International Conference on 19
dec 2009 , pp.1 – 5.

[19] Xiaosong Li, Hao Wang, Taoying Liu, Wei Li,” Key

Elements Tracing Method for Parallel XML Parsing in

Multi-core System”, 2009 International Conference on
Parallel and Distributed Computing, Applications and
Technologies, 978-0-7695-3914-0/09 $26.00 © 2009
IEEE DOI 10.1109/PDCAT.2009.64

[20] M. Van Cappellen, Z. H. Lui, J. Melton, and Maxim
Orgiyan, “XQJ - XQuery Java API is Completed”,
SIMOD Record, vol. 38, no. 4, 2009.

[21] Shu Yuan-zhong,”Research of optimizing device
description technology based on XML in EPA” 2009
Second International Symposium on Electronic
Commerce and Security.

[22] Gong Li and Liu Gao-Feng, Liu Zhong and An Ru-
Kui, “XML Processing by Tree-Branch symbiosis

algorithm”, 2010 2nd International Conference on
Future Computer and Communication, Volume 1.

[23] Rami Alnaqeib, Fahad H.Alshammari, M.A.Zaidan,”
An Overview: Extensible Markup Language
Technology”, Journal of computing, Volume 2, Issue 6,
June 2010, ISSN 2151-9617,pp -177-181

[24] V.M. Deshmukh, G.R. Bamnote, “DESIGN AND

DEVELOPMENT OF AN EFFICIENT XML PARSING

ALGORITHM: A REVIEW”, International Journal of
Applied Science and Advance Technologyz, January-
June 2012, Vol. 1, No. 1, pp. 5-8.

[25] Cheng-Han You and Sheng-De Wang,” A Data Parallel
Approach to XML Parsing and Query” 2011 IEEE
International Conference on High Performance
Computing and Communications pp-520-527

[26] Girish Tere Bharat Jadhav,” Efficient Processing of
XML Documents” International Conference on
Technology Systems and Management (ICTSM) 2011
Proceedings published by International Journal of
Computer Applications® (IJCA).

[27] Ms. V.M.Deshmukh, Dr. G.R.Bamnote, “An Empirical

Study: XML Parsing using Various Data Structures”,
International Journal of Computer Science and
Applications, Vol. 6, No.2, Apr 2013.

[28] Jie Tang, Shaoshan Liu, Chen Liu, Zhimin Gu, and
Jean-Luc Gaudiot,” Acceleration of XML Parsing

through Prefetching”, IEEE TRANSACTIONS ON
COMPUTERS, VOL. 62, NO. 8, AUGUST 2013

[29] Mohammad Khabbaz, Dirar Assi,Reda Alhaj,
Moustafa Hammad,” Parse Tree Based Approach for

Processing XML Streams”, IEEE IRI 2013, August 14-
16, 2013, San Francisco, California, USA 978-1-4799-
1050-2/13/$31.00 ©2013 IEEE

[30] Bruno Oliveira1,Vasco Santos1 and Orlando Belo2,”
Processing XML with Java – A Performance

Benchmark”, International Journal of New Computer
Architectures and their Applications (IJNCAA) 3(1):
72-85 The Society of Digital Information and Wireless
Communications (SDIWC) 2013 (ISSN: 2220-9085)
,pp. 72-85.

[31] Michael R. Head† Madhusudhan Govindaraju,
“Parallel Processing of Large-Scale XML-Based

Application Documents on Multi-core Architectures

with PiXiMaL”, Fourth IEEE International Conference
on eScience.

[32] Wei Lu , Kenneth Chiu, Yinfei Pan, “A Parallel

Approach to XML Parsing”.
[33] Li Zhao , Laxmi Bhuyan , “Performance Evaluation

and Acceleration for XML Data
Parsing,“http://citeseerx.ist.psu.edu/viewdoc/dow
nload?doi=10.1.1.134.5330 &rep=rep1&type=pdf

[34] W3C, “Extensible Markup Language (XML)”.
[Online].Available:http://www.w3.org/XML.

[35] Xml Pull Parser,
http://www.extreme.indiana.edu/xgws/xsoap/xpp/

[36] libxml2, http://www.xmlsoft.org/
[37] Xml Pull Parser,

http://www.extreme.indiana.edu/xgws/xsoap/xpp/

Author Profile

First Author: Prof. Ms.V.M.Deshmukh ,Head of Information
Technology ,P.R.M.I.T & R,Badnera
Second Author Dr.G.R.Bamnote Head of Computer Science &
Engg ,P.R.M.I.T & R,Badnera
Third Author Ms. Prachi V.Kale ,Student M.E Computer Science &
Engg ,P.R.M.I.T & R,Badnera

