
IJCAT - International Journal of Computing and Technology
Volume 1, Issue 1, February 2014
www.IJCAT.org

60

Optimization of Large Join Query using Heuristic

Greedy Algorithm

1 Vishal P. Patel, 2 Hardik R. Kadiya

1 PG Student of Computer Department, Merchant Engineering College,

Basna, Gujarat,India

2 Faculty of Computer Department, Merchant Engineering College,
Basna, Gujarat, India

Abstract - Sql Statements are used to retrieve data from the

database. One can get the same results by writing different sql
queries. But use of the best query is important when

performance is to be considered. So you need to use sql query
tuning based on the requirement. Asqueries are stated in non-
procedural manner, the need of optimizer arises that transform

the straight forward translation of a query in to a cost-effective
evaluation plan. Due to their high evaluation costs, joins are a

primary target of query optimizers.Use of Heuristic to cut-
down alternatives and Greedy Algorithm for finding
suboptimal solution in less time rather than using dynamic

programming and branch and bound to find optimal solution in
more time than greedy algorithm.

Keywords - Query Optimization, Relational Databases

Cost-Based optimization, Heuristic greedy algorithm,

Hybrid query optimization.

1. Introduction

Fig. 1: Optimizer of a commercial RDBMS[1]

First the parsed query must pass the query transformer

inside the optimizer the query transformer rewrite the

query using heuristic like[2]

(1) Perform selection and projection as early as possible

(2) Predicate pushdown

(3) Subqueryunnesting

Example:SelectA.id,u from A where A.id in (select Aid

from B where V=0); Can be transformed in to query

using join method Select A.id,u from A inner join B on

(A.id=B.id) where v=0;

Next the transformed query passes the estimator. This

section estimates the costs (e.g. number of rows) of

different operation which might be relevant to execute

the query. Therefore a dictionary (which contains

statistical information about the data) can be used to be

able to estimate the number of rows which match a

where clause.Finally, the plan generator is determining

the expected optimal query plan to execute the query.

2. Database Statistics

Success of estimation depends on statistical information

DBMS holds. Keeping statistics current can be

problematic. If statistics updated every time tuple is

changed, this would impact performance, so DBMS

provide statistical information on base data.DBMS could

update statistics on a periodic basis, for example nightly,

or whenever the system is idle. This could lead to
inaccurate estimates.Query optimization tries to find

best possible plan within a minimum amount of time

using mostly semi accurate statistical information.

3. Join Scheduling for Query Optimization

Algorithm applied to explore search space and

determine the best query execution plan(QEP) based on

join selectivity

Join selectivity=ratio of the number of tuples in the

result/number of tuples in the Cartesian product.

Classes of strategies solve problem of join scheduling[4]

Deterministic Strategy: Starting from base relation,

joining one or more relations at each step till complete

plans are obtained.

IJCAT - International Journal of Computing and Technology
Volume 1, Issue 1, February 2014
www.IJCAT.org

Example: Dynamic Programming, Greedy Algorithm

Randomized Strategies: These strategies do not

guarantee optimal plan but they avoid high cost

optimization in terms of memory and time consumption

Example: Iterative improvement, Simulated Annealing.

4. Explain Statement in SQL

An explain statement in SQL is a statement which

consists of the keyword “explain” followed by a select

statement. The select statement will then be parsed by

the parser of the RDBMS. Afterwards, the optimizer will
decidewhich one is the expected optimal query plan to

execute the query.

Example: Explain select A.id ,B.id, u, v from A inner

join B on (A.id=B.Aid)[5]

QUERY PLAN

Hash Join (cost=1.07. . . 2.18 rows=3 width=6)

Hash Cond :(b.aid=a.id)

�Seq scan on b (cost = 0.00...1.07 width=8)

 Filter: (p=0)

� Hash (cost=1.03…1.03 rows=3 width=6)

�Seq scan on a (cost=0.00..1.03 rows=3 width=6)

5. Shapes of join Query Tree

Fig. 2:Shapes of join Query Tree[6]

Number of possible join tree for a given n relation is

determined by using (Cn-1*n!) where Cn is the Catalan

number that is satisfied using following formula

Cn= ((2n)!) / ((n+1)!*n!)[7]

Require to proceed further by using Left-deep tree is

preferable because by using Left-deep tree we required
to consider only(n!) possible tree where n is the number

of relation in a query. By using Left-deep tree no require

to store intermediate result and pipeline can be possible.

In left-deep tree all leaf node as a relation and all

intermediate node as a join operator.

Table 1. Number of Possible Trees [8]

5.1 Transformation rules for Join operation[9]:

5.2 Shapes of Query[10]

1) Star Query: In star query there is a subset of

attributes common to all relations in the query

2) Chain Query: In chain query all except two queries

have common attribute with exactly two other relations

but the first and last relations have attributes in common

with only one other query. Each attribute is common to

at most two relations.

3) Circular Query: In a circular query, each query has

common attribute with exactly two other relations and

each attribute is common to at most two relations.

4) Clique query: In a clique Query, every pair of

relation has a unique subset of common attributes.

Proceed further by using chain query is preferable

because most database operation of type chain query

IJCAT - International Journal of Computing and Technology
Volume 1, Issue 1, February 2014
www.IJCAT.org

62

6. Experiments & Results

6.1 Example (Cartesian Join):

Fig.3: Initial Query Tree &Using Algorithm

Table 2. Database Statistics (Cartesian Join Example)

Table Name No of

Rows

Avg.

Row

Length

Table

Size

Affecte

d Rows

Result

Size

Department

(T0)

20 30 600 1 30

Classroom

(T1)

30 20 600 5 100

Course

(T2)

200 37 7400 200 7400

Cost of Initial Query Tree [Space usage]=

A [Cost of crossjoin T1and T2] + B [Cost of cross join

A and T0] +C [Number of rows after apply selection on

B]

=A [{30 * 200} * {20+37}] + B [{6000 * 20}*

{57+30}] + C[{1000*87}]

=A[342000] + B [10440000] + C [87000]

Cost of Query Tree by Algorithm[Space usage] =

A[Cost of applying selection on T0] + B[Cost of

applying selection on T1] + C[cost of apply cross join on

A and B]+D[cost of apply cross join on C and T2]

=A[{1*30}]+B[{5*20}]+C[{1*5}*{30+20}]+D[{5*20}

*{50+37}]

=A[30]+B[100]+C[250]+D[87000]

6.2 Example (Equi Join):

Table 3. Database Statistics (Equi Join Example)

Table Name No of

Rows

Avg

Row
Length

Table

Size

Affected

Rows

Result

Size

Student(T0) 2000 29 58000 12 348

Classroom(T1) 30 20 600 30 600

Department(T2) 20 30 600 20 600

Cost of Initial Query Tree [Space usage] =

 A [Cost of cross join T1 and T2] + B [Cost of cross join
A and T0] + C[Number of rows after apply selection

on B]

=A[{30*20}*{20+30}]+B[{50*2000}*{50+29}]+C[{1

0*79}]

=A[30000]+B[7900000]+C[790]

Cost of Query Tree by Algorithm [Space usage] =

A [Cost of applying selection on T0] + B [Cost of

applying join on T2 and A] +

C [Cost of applying join on B and T1]

= A [{12*29}] + B [12*(29+30)] + C [10*(29+20+30)]
= A [348] +B [708] +C [790]

IJCAT - International Journal of Computing and Technology
Volume 1, Issue 1, February 2014
www.IJCAT.org

63

Fig.4: Initial Query Tree & Using Algorithm

7. Conclusions and Future Work

Reduce intermediate result size ultimately reduces the

execution time. Experiment result shows Combine

Heuristic and Greedy approach provide better

performance for optimization of Large join

query.Optimization only on select-project-join queries

also need to handle complex queries (e.g. Top-k query,

Group by, aggregations, materialized view, recursive

query, dynamic query).Optimize query on centralized

system can be extended to implement on parallel

database and Distributed Database.

References

[1] Dr.G. R. Bamnote, Prof. S. S. Agrawal, “Introduction

to Query Processing and Optimization”IJARCSSE

Volume 3, Issue 7, July 2013 ISSN: 2277 128X
[2] Alon Y. Levy, Inderpal Singh Mumick,

YehoshuaSagiv, “Query Optimization by Predicate
Move-Around”, AT&T Bell Laboratories, Proceedings

of the 20th VLDB Conference, Santiago, Chile, 1994.
[3] Nicolas Bruno, SurajitChaudhuri,“Efficient Creation

of Statistics over Query Expressions” Data

Engineering, 2003. IEEE 19th International
Conference, On Page(s): 201-212 ISBN:0-7803-7665-

X.
[4] Prof.M.A.Pund, S.R.Jadhao, P.D.Thakare, “A Role of

Query Optimization in RelationalDatabase”,

International Journal of Scientific & Engineering
Research, Volume 2, Issue 1, January-2011 1ISSN

2229-5518.
[5] Thomas Mayer, “Analyzing Plan Diagrams of Database

Query Optimizers”, KIT, Institute for

Programmstrukturen und Datenorganisation (IPD),D-
76131 Karlsruhe, Germany.

[6] AlaaAljanaby, EmadAbuelrub, and Mohammed Odeh,
“A Survey of Distributed Query Optimization” The

International Arab Journal of Information Technology,
Vol. 2, No. 1, January 2005.

[7] “cost based plan selection enumerate estimate
select”, "Database Systems: The Complete Book

(second edition)" by H. Garcia-Molina, J. D. Ullman,
and J. Widom (ISBN-13: 978-0131354289)

[8] SurajitChaudhuri, “An Overview of Query

Optimization in Relational Systems”, seventeenth

ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, Pages 34-43, ISBN:0-
89791-996-3

[9] Yannis E. Ioannidis,Younkyung Cha Kang, “Left-Deep
Vs Bushy Trees: ACM 0-89791-425-2/91/0005/0168

ACM
[10] MostafaPilehvar, “A new approach to join reordering in

query optimization” Concordiauniversity, Montreal,

Canada, March 2005
[11] N. Satyanarayana, Sk.Sharfuddin, Sk.JanBhasha, “New

Dynamic Query Optimization Technique InRelational
Database Management Systems” International Journal
Of Communication Network Security, Issn: 2231 –

1882, Volume-2, Issue-2, 2013
[12] Prof. Miss. S. D. Pandao, Prof. A. D.Isalkar, “Multi

Query Optimization Using Heuristic Approach
Heuristic Approach” International Journal of Computer

Science and Network (Ijcsn) Volume 1, Issue 4, August
2012 Www.Ijcsn.Org Issn 2277-5420

[13] JyotiMor,InduKashyap, R. K. Rathy, “Analysis of

Query Optimization Techniques in
Databases”International Journal of Computer

Applications (0975 – 888)Volume 47– No.15, June

2012
[14] CJ.Date, “An Introduction to database

systems”Adission wisely
[15] Abraham Silberschataz, Henry F. Korth& S.

Sudarshan, “Databse system concepts” Mc Graw Hill

Mr. Vishal P. Patel, He graduated from L.C institute of
technology Bhandu (Affiliated to H.N.G.U Patan), presently
pursuing M.Tech. in computer engineering at MEC,Basna
affiliated to Gujarat technological university, Gujarat, India. His
interested area in object-oriented systems, database and
computer algorithms

Mr. Hardik R. Kadiya,He is Asst.Professor in Merchant
engineering college,Basna,Gujarat,India.He received bachelor
degree in information technology from government engineering
college,Modasa,Gujarat,India. And M.E from merchant
engineering college,affiliated to Gujarat technological
universityand his area of interest are image
processing,database and computer network.

